Spaces:
Running
Running
stefanbenten
commited on
*: initial release
Browse files- README.md +5 -5
- app.py +168 -0
- requirements.txt +3 -0
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.42.0
|
8 |
app_file: app.py
|
@@ -10,4 +10,4 @@ pinned: false
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
-
|
|
|
1 |
---
|
2 |
+
title: stable-diffusion-xl
|
3 |
+
emoji: 🔥
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: gray
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.42.0
|
8 |
app_file: app.py
|
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
+
Prodia's Stable Diffusion XL Space.
|
app.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import gradio as gr
|
3 |
+
import requests
|
4 |
+
import time
|
5 |
+
import json
|
6 |
+
import base64
|
7 |
+
import os
|
8 |
+
from PIL import Image
|
9 |
+
from io import BytesIO
|
10 |
+
|
11 |
+
class Prodia:
|
12 |
+
def __init__(self, api_key, base=None):
|
13 |
+
self.base = base or "https://api.prodia.com/v1"
|
14 |
+
self.headers = {
|
15 |
+
"X-Prodia-Key": api_key
|
16 |
+
}
|
17 |
+
|
18 |
+
def generate(self, params):
|
19 |
+
response = self._post(f"{self.base}/sdxl/generate", params)
|
20 |
+
return response.json()
|
21 |
+
|
22 |
+
def get_job(self, job_id):
|
23 |
+
response = self._get(f"{self.base}/job/{job_id}")
|
24 |
+
return response.json()
|
25 |
+
|
26 |
+
def wait(self, job):
|
27 |
+
job_result = job
|
28 |
+
|
29 |
+
while job_result['status'] not in ['succeeded', 'failed']:
|
30 |
+
time.sleep(0.25)
|
31 |
+
job_result = self.get_job(job['job'])
|
32 |
+
|
33 |
+
return job_result
|
34 |
+
|
35 |
+
def list_models(self):
|
36 |
+
response = self._get(f"{self.base}/models/list")
|
37 |
+
return response.json()
|
38 |
+
|
39 |
+
def _post(self, url, params):
|
40 |
+
headers = {
|
41 |
+
**self.headers,
|
42 |
+
"Content-Type": "application/json"
|
43 |
+
}
|
44 |
+
response = requests.post(url, headers=headers, data=json.dumps(params))
|
45 |
+
|
46 |
+
if response.status_code != 200:
|
47 |
+
raise Exception(f"Bad Prodia Response: {response.status_code}")
|
48 |
+
|
49 |
+
return response
|
50 |
+
|
51 |
+
def _get(self, url):
|
52 |
+
response = requests.get(url, headers=self.headers)
|
53 |
+
|
54 |
+
if response.status_code != 200:
|
55 |
+
raise Exception(f"Bad Prodia Response: {response.status_code}")
|
56 |
+
|
57 |
+
return response
|
58 |
+
|
59 |
+
|
60 |
+
def image_to_base64(image_path):
|
61 |
+
# Open the image with PIL
|
62 |
+
with Image.open(image_path) as image:
|
63 |
+
# Convert the image to bytes
|
64 |
+
buffered = BytesIO()
|
65 |
+
image.save(buffered, format="PNG") # You can change format to PNG if needed
|
66 |
+
|
67 |
+
# Encode the bytes to base64
|
68 |
+
img_str = base64.b64encode(buffered.getvalue())
|
69 |
+
|
70 |
+
return img_str.decode('utf-8') # Convert bytes to string
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY"))
|
75 |
+
|
76 |
+
def flip_text(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed):
|
77 |
+
result = prodia_client.generate({
|
78 |
+
"prompt": prompt,
|
79 |
+
"negative_prompt": negative_prompt,
|
80 |
+
"model": model,
|
81 |
+
"steps": steps,
|
82 |
+
"sampler": sampler,
|
83 |
+
"cfg_scale": cfg_scale,
|
84 |
+
"width": width,
|
85 |
+
"height": height,
|
86 |
+
"seed": seed
|
87 |
+
})
|
88 |
+
|
89 |
+
job = prodia_client.wait(result)
|
90 |
+
|
91 |
+
return job["imageUrl"]
|
92 |
+
|
93 |
+
css = """
|
94 |
+
#generate {
|
95 |
+
height: 100%;
|
96 |
+
}
|
97 |
+
"""
|
98 |
+
|
99 |
+
with gr.Blocks(css=css) as demo:
|
100 |
+
|
101 |
+
|
102 |
+
with gr.Row():
|
103 |
+
with gr.Column(scale=6):
|
104 |
+
model = gr.Dropdown(interactive=True,value="sd_xl_base_1.0.safetensors [be9edd61]", show_label=True, label="Stable Diffusion Checkpoint", choices=[
|
105 |
+
"sd_xl_base_1.0.safetensors [be9edd61]",
|
106 |
+
"dynavisionXL_0411.safetensors [c39cc051]",
|
107 |
+
"dreamshaperXL10_alpha2.safetensors [c8afe2ef]",
|
108 |
+
])
|
109 |
+
|
110 |
+
with gr.Column(scale=1):
|
111 |
+
gr.Markdown(elem_id="powered-by-prodia", value="AUTOMATIC1111 Stable Diffusion Web UI for SDXL V1.0.<br>Powered by [Prodia](https://prodia.com).")
|
112 |
+
|
113 |
+
with gr.Tab("txt2img"):
|
114 |
+
with gr.Row():
|
115 |
+
with gr.Column(scale=6, min_width=600):
|
116 |
+
prompt = gr.Textbox("puppies in a cloud, 4k", placeholder="Prompt", show_label=False, lines=3)
|
117 |
+
negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3)
|
118 |
+
with gr.Column():
|
119 |
+
text_button = gr.Button("Generate", variant='primary', elem_id="generate")
|
120 |
+
|
121 |
+
with gr.Row():
|
122 |
+
with gr.Column(scale=3):
|
123 |
+
with gr.Tab("Generation"):
|
124 |
+
with gr.Row():
|
125 |
+
with gr.Column(scale=1):
|
126 |
+
sampler = gr.Dropdown(value="Euler a", show_label=True, label="Sampling Method", choices=[
|
127 |
+
"Euler",
|
128 |
+
"Euler a",
|
129 |
+
"LMS",
|
130 |
+
"Heun",
|
131 |
+
"DPM2",
|
132 |
+
"DPM2 a",
|
133 |
+
"DPM++ 2S a",
|
134 |
+
"DPM++ 2M",
|
135 |
+
"DPM++ SDE",
|
136 |
+
"DPM fast",
|
137 |
+
"DPM adaptive",
|
138 |
+
"LMS Karras",
|
139 |
+
"DPM2 Karras",
|
140 |
+
"DPM2 a Karras",
|
141 |
+
"DPM++ 2S a Karras",
|
142 |
+
"DPM++ 2M Karras",
|
143 |
+
"DPM++ SDE Karras",
|
144 |
+
])
|
145 |
+
|
146 |
+
with gr.Column(scale=1):
|
147 |
+
steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=30, value=25, step=1)
|
148 |
+
|
149 |
+
with gr.Row():
|
150 |
+
with gr.Column(scale=1):
|
151 |
+
width = gr.Slider(label="Width", minimum=1024, maximum=1024, value=1024, step=8)
|
152 |
+
height = gr.Slider(label="Height", minimum=1024, maximum=1024, value=1024, step=8)
|
153 |
+
|
154 |
+
with gr.Column(scale=1):
|
155 |
+
batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
|
156 |
+
batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
|
157 |
+
|
158 |
+
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
|
159 |
+
seed = gr.Number(label="Seed", value=-1)
|
160 |
+
|
161 |
+
|
162 |
+
with gr.Column(scale=2):
|
163 |
+
image_output = gr.Image()
|
164 |
+
|
165 |
+
text_button.click(flip_text, inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed], outputs=image_output)
|
166 |
+
|
167 |
+
demo.queue(concurrency_count=5)
|
168 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
gradio
|
3 |
+
requests
|