import gradio as gr from transformers import pipeline import numpy as np from PIL import Image checkpoint = "openai/clip-vit-base-patch32" classifier = pipeline(model=checkpoint, task="zero-shot-image-classification") def shot(image, labels_text): labels = labels_text.split(";") results = classifier(image, candidate_labels=labels) return {result["label"]: result["score"] for result in results} demo = gr.Interface(shot, [gr.Image(type="pil"), gr.Textbox( label="Labels", info="Separated by a semicolon (;)", lines=6, value="""A page of printed text; A page of handwritten text; A blank page with no text; A cover of a book; A page of a book that contains a large illustration; A page that features a table with multiple columns and rows""", )], outputs="label", examples=[['Journalsdateboo00DeanZ_0177.jpg',None], ["newmexicobotani00newmb_0084.jpg",None], ["easternareacrui00natic_0004.jpg",None], ["newmexicobotani00newmb_0084.jpg",None], ["sturmsfiguresofp01stur_0263.jpg",None]], description="Upload an image of a scanned document page, or choose one of the examples below", title="Zero-shot Image Classification of BHL Images") demo.launch()