vilt_demo / app.py
MikailDuzenli's picture
adding image for no heatmap
d7b5656
import gradio as gr
import torch
import torch.nn.functional as F
import requests
import numpy as np
import re
import io
import matplotlib.pyplot as plt
from PIL import Image
from transformers import ViltProcessor, ViltForMaskedLM
from torchvision import transforms
processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-mlm")
model = ViltForMaskedLM.from_pretrained("dandelin/vilt-b32-mlm")
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model.to(device)
class MinMaxResize:
def __init__(self, shorter=800, longer=1333):
self.min = shorter
self.max = longer
def __call__(self, x):
w, h = x.size
scale = self.min / min(w, h)
if h < w:
newh, neww = self.min, scale * w
else:
newh, neww = scale * h, self.min
if max(newh, neww) > self.max:
scale = self.max / max(newh, neww)
newh = newh * scale
neww = neww * scale
newh, neww = int(newh + 0.5), int(neww + 0.5)
newh, neww = newh // 32 * 32, neww // 32 * 32
return x.resize((neww, newh), resample=Image.Resampling.BICUBIC)
def pixelbert_transform(size=800):
longer = int((1333 / 800) * size)
return transforms.Compose(
[
MinMaxResize(shorter=size, longer=longer),
transforms.ToTensor(),
transforms.Compose([transforms.Normalize(
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])]),
]
)
def cost_matrix_cosine(x, y, eps=1e-5):
"""Compute cosine distnace across every pairs of x, y (batched)
[B, L_x, D] [B, L_y, D] -> [B, Lx, Ly]"""
assert x.dim() == y.dim()
assert x.size(0) == y.size(0)
assert x.size(2) == y.size(2)
x_norm = F.normalize(x, p=2, dim=-1, eps=eps)
y_norm = F.normalize(y, p=2, dim=-1, eps=eps)
cosine_sim = x_norm.matmul(y_norm.transpose(1, 2))
cosine_dist = 1 - cosine_sim
return cosine_dist
@torch.no_grad()
def ipot(C, x_len, x_pad, y_len, y_pad, joint_pad, beta, iteration, k):
""" [B, M, N], [B], [B, M], [B], [B, N], [B, M, N]"""
b, m, n = C.size()
sigma = torch.ones(b, m, dtype=C.dtype,
device=C.device) / x_len.unsqueeze(1)
T = torch.ones(b, n, m, dtype=C.dtype, device=C.device)
A = torch.exp(-C.transpose(1, 2) / beta)
# mask padded positions
sigma.masked_fill_(x_pad, 0)
joint_pad = joint_pad.transpose(1, 2)
T.masked_fill_(joint_pad, 0)
A.masked_fill_(joint_pad, 0)
# broadcastable lengths
x_len = x_len.unsqueeze(1).unsqueeze(2)
y_len = y_len.unsqueeze(1).unsqueeze(2)
# mask to zero out padding in delta and sigma
x_mask = (x_pad.to(C.dtype) * 1e4).unsqueeze(1)
y_mask = (y_pad.to(C.dtype) * 1e4).unsqueeze(1)
for _ in range(iteration):
Q = A * T # bs * n * m
sigma = sigma.view(b, m, 1)
for _ in range(k):
delta = 1 / (y_len * Q.matmul(sigma).view(b, 1, n) + y_mask)
sigma = 1 / (x_len * delta.matmul(Q) + x_mask)
T = delta.view(b, n, 1) * Q * sigma
T.masked_fill_(joint_pad, 0)
return T
def get_model_embedding_and_mask(model, input_ids, pixel_values):
input_shape = input_ids.size()
text_batch_size, seq_length = input_shape
device = input_ids.device
attention_mask = torch.ones(((text_batch_size, seq_length)), device=device)
image_batch_size = pixel_values.shape[0]
image_token_type_idx = 1
if image_batch_size != text_batch_size:
raise ValueError(
"The text inputs and image inputs need to have the same batch size")
pixel_mask = torch.ones((image_batch_size, model.vilt.config.image_size,
model.vilt.config.image_size), device=device)
text_embeds = model.vilt.embeddings.text_embeddings(
input_ids=input_ids, token_type_ids=None, inputs_embeds=None)
image_embeds, image_masks, patch_index = model.vilt.embeddings.visual_embed(
pixel_values=pixel_values, pixel_mask=pixel_mask, max_image_length=model.vilt.config.max_image_length
)
text_embeds = text_embeds + model.vilt.embeddings.token_type_embeddings(
torch.zeros_like(attention_mask, dtype=torch.long,
device=text_embeds.device)
)
image_embeds = image_embeds + model.vilt.embeddings.token_type_embeddings(
torch.full_like(image_masks, image_token_type_idx,
dtype=torch.long, device=text_embeds.device)
)
return text_embeds, image_embeds, attention_mask, image_masks, patch_index
def infer(url, mp_text, hidx):
try:
res = requests.get(url)
image = Image.open(io.BytesIO(res.content)).convert("RGB")
img = pixelbert_transform(size=500)(image)
img = img.unsqueeze(0).to(device)
except:
return False
tl = len(re.findall("\[MASK\]", mp_text))
inferred_token = [mp_text]
encoding = processor(image, mp_text, return_tensors="pt")
with torch.no_grad():
for i in range(tl):
encoded = processor.tokenizer(inferred_token)
input_ids = torch.tensor(encoded.input_ids)
encoded = encoded["input_ids"][0][1:-1]
outputs = model(input_ids=input_ids,
pixel_values=encoding.pixel_values)
mlm_logits = outputs.logits[0] # shape (seq_len, vocab_size)
# only take into account text features (minus CLS and SEP token)
mlm_logits = mlm_logits[1: input_ids.shape[1] - 1, :]
mlm_values, mlm_ids = mlm_logits.softmax(dim=-1).max(dim=-1)
# only take into account text
mlm_values[torch.tensor(encoded) != 103] = 0
select = mlm_values.argmax().item()
encoded[select] = mlm_ids[select].item()
inferred_token = [processor.decode(encoded)]
encoded = processor.tokenizer(inferred_token)
output = processor.decode(encoded.input_ids[0], skip_special_tokens=True)
selected_token = ''
result = Image.open('no_heatmap.jpg')
if hidx > 0 and hidx < len(encoded["input_ids"][0][:-1]):
input_ids = torch.tensor(encoded.input_ids)
outputs = model(
input_ids=input_ids, pixel_values=encoding.pixel_values, output_hidden_states=True)
txt_emb, img_emb, text_masks, image_masks, patch_index = get_model_embedding_and_mask(
model, input_ids=input_ids, pixel_values=encoding.pixel_values)
embedding_output = torch.cat([txt_emb, img_emb], dim=1)
attention_mask = torch.cat([text_masks, image_masks], dim=1)
extended_attention_mask = model.vilt.get_extended_attention_mask(
attention_mask, input_ids.size(), device=device)
encoder_outputs = model.vilt.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=None,
output_attentions=False,
output_hidden_states=True,
return_dict=True,
)
x = encoder_outputs.hidden_states[-1]
x = model.vilt.layernorm(x)
txt_emb, img_emb = (
x[:, :txt_emb.shape[1]],
x[:, txt_emb.shape[1]:],
)
txt_mask, img_mask = (
text_masks.bool(),
image_masks.bool(),
)
for i, _len in enumerate(txt_mask.sum(dim=1)):
txt_mask[i, _len - 1] = False
txt_mask[:, 0] = False
img_mask[:, 0] = False
txt_pad, img_pad = ~txt_mask, ~img_mask
cost = cost_matrix_cosine(txt_emb.float(), img_emb.float())
joint_pad = txt_pad.unsqueeze(-1) | img_pad.unsqueeze(-2)
cost.masked_fill_(joint_pad, 0)
txt_len = (txt_pad.size(1) - txt_pad.sum(dim=1,
keepdim=False)).to(dtype=cost.dtype)
img_len = (img_pad.size(1) - img_pad.sum(dim=1,
keepdim=False)).to(dtype=cost.dtype)
T = ipot(cost.detach(),
txt_len,
txt_pad,
img_len,
img_pad,
joint_pad,
0.1,
1000,
1,
)
plan = T[0]
plan_single = plan * len(txt_emb)
cost_ = plan_single.t()
cost_ = cost_[hidx][1:].cpu()
patch_index, (H, W) = patch_index
heatmap = torch.zeros(H, W)
for i, pidx in enumerate(patch_index[0]):
h, w = pidx[0].item(), pidx[1].item()
heatmap[h, w] = cost_[i]
heatmap = (heatmap - heatmap.mean()) / heatmap.std()
heatmap = np.clip(heatmap, 1.0, 3.0)
heatmap = (heatmap - heatmap.min()) / (heatmap.max() - heatmap.min())
_w, _h = image.size
overlay = Image.fromarray(np.uint8(heatmap * 255), "L").resize(
(_w, _h), resample=Image.Resampling.NEAREST
)
image_rgba = image.copy()
image_rgba.putalpha(overlay)
result = image_rgba
selected_token = processor.tokenizer.convert_ids_to_tokens(
encoded["input_ids"][0][hidx]
)
return [np.array(image), output, selected_token, result]
title = "What's in the picture ?"
description = """
Can't find your words to describe an image ? The pre-trained
ViLT model will help you. Give the url of an image and a caption with [MASK] tokens to be filled or play with the given examples !
You can even see where the model focused its attention for a given word : just choose the index of the selected word with the slider.
"""
inputs_interface = [
gr.inputs.Textbox(
label="Url of an image.",
lines=5,
),
gr.inputs.Textbox(
label="Caption with [MASK] tokens to be filled.", lines=5),
gr.inputs.Slider(
minimum=0,
maximum=38,
step=1,
label="Index of token for heatmap visualization (ignored if zero)",
),
]
outputs_interface = [
gr.outputs.Image(label="Image"),
gr.outputs.Textbox(label="description"),
gr.outputs.Textbox(label="selected token"),
gr.outputs.Image(label="Heatmap")
]
interface = gr.Interface(
fn=infer,
inputs=inputs_interface,
outputs=outputs_interface,
title=title,
description=description,
server_name="0.0.0.0",
server_port=8888,
examples=[
[
"https://s3.geograph.org.uk/geophotos/06/21/24/6212487_1cca7f3f_1024x1024.jpg",
"a display of flowers growing out and over the [MASK] [MASK] in front of [MASK] on a [MASK] [MASK].",
0,
],
[
"https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcT5W71UTcSBm3r5l9NzBemglq983bYvKOHRkw&usqp=CAU",
"An [MASK] with the [MASK] in the [MASK].",
5,
],
[
"https://www.referenseo.com/wp-content/uploads/2019/03/image-attractive-960x540.jpg",
"An [MASK] is flying with a [MASK] over a [MASK].",
2,
],
],
)
interface.launch()