|
import streamlit as st |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
model_name2 = "Mhassanen/nllb-200-600M-En-Ar-finetuned" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name2, src_lang="eng_Latn", tgt_lang="arz_Arab") |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name2) |
|
|
|
def translate2(text): |
|
inputs = tokenizer(text, return_tensors="pt", padding=True) |
|
translated_tokens = model.generate(**inputs) |
|
translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True) |
|
return translated_text[0] |
|
|
|
|
|
|
|
|
|
with st.sidebar: |
|
|
|
|
|
|
|
st.markdown("## About") |
|
st.markdown("---") |
|
|
|
st.markdown(''' |
|
This App powered by [Mhassanen/nllb-200-600M-En-Ar-finetuned](https://huggingface.co/Mhassanen/nllb-200-600M-En-Ar-finetuned) Language model |
|
''') |
|
|
|
|
|
|
|
st.title("English to Arabic Translation") |
|
|
|
text_to_translate = st.text_area("Enter text in English:") |
|
|
|
if st.button("Translate"): |
|
if text_to_translate: |
|
with st.spinner("Translating..."): |
|
translation = translate2(text_to_translate) |
|
st.success("Translation completed!") |
|
st.text_area("Translated text in Arabic:", translation, height=200) |
|
else: |
|
st.warning("Please enter some text to translate.") |
|
|