--- title: Real-Time Latent Consistency Model Image-to-Image ControlNet emoji: 🖼️🖼️ colorFrom: gray colorTo: indigo sdk: docker pinned: false suggested_hardware: a10g-small --- # Real-Time Latent Consistency Model This demo showcases [Latent Consistency Model (LCM)](https://latent-consistency-models.github.io/) using [Diffusers](https://huggingface.co/docs/diffusers/using-diffusers/lcm) with a MJPEG stream server. You can read more about LCM + LoRAs with diffusers [here](https://huggingface.co/blog/lcm_lora). You need a webcam to run this demo. 🤗 See a collecting with live demos [here](https://huggingface.co/collections/latent-consistency/latent-consistency-model-demos-654e90c52adb0688a0acbe6f) ## Running Locally You need CUDA and Python 3.10, Node > 19, Mac with an M1/M2/M3 chip or Intel Arc GPU ## Install ```bash python -m venv venv source venv/bin/activate pip3 install -r requirements.txt cd frontend && npm install && npm run build && cd .. # fastest pipeline python run.py --reload --pipeline img2imgSD21Turbo ``` # Pipelines You can build your own pipeline following examples here [here](pipelines), don't forget to fuild the frontend first ```bash cd frontend && npm install && npm run build && cd .. ``` # LCM ### Image to Image ```bash python run.py --reload --pipeline img2img ``` # LCM ### Text to Image ```bash python run.py --reload --pipeline txt2img ``` ### Image to Image ControlNet Canny ```bash python run.py --reload --pipeline controlnet ``` # LCM + LoRa Using LCM-LoRA, giving it the super power of doing inference in as little as 4 steps. [Learn more here](https://huggingface.co/blog/lcm_lora) or [technical report](https://huggingface.co/papers/2311.05556) ### Image to Image ControlNet Canny LoRa ```bash python run.py --reload --pipeline controlnetLoraSD15 ``` or SDXL, note that SDXL is slower than SD15 since the inference runs on 1024x1024 images ```bash python run.py --reload --pipeline controlnetLoraSDXL ``` ### Text to Image ```bash python run.py --reload --pipeline txt2imgLora ``` or ```bash python run.py --reload --pipeline txt2imgLoraSDXL ``` ### Setting environment variables `TIMEOUT`: limit user session timeout `SAFETY_CHECKER`: disabled if you want NSFW filter off `MAX_QUEUE_SIZE`: limit number of users on current app instance `TORCH_COMPILE`: enable if you want to use torch compile for faster inference works well on A100 GPUs `USE_TAESD`: enable if you want to use Autoencoder Tiny If you run using `bash build-run.sh` you can set `PIPELINE` variables to choose the pipeline you want to run ```bash PIPELINE=txt2imgLoraSDXL bash build-run.sh ``` and setting environment variables ```bash TIMEOUT=120 SAFETY_CHECKER=True MAX_QUEUE_SIZE=4 python run.py --reload --pipeline txt2imgLoraSDXL ``` If you're running locally and want to test it on Mobile Safari, the webserver needs to be served over HTTPS, or follow this instruction on my [comment](https://github.com/radames/Real-Time-Latent-Consistency-Model/issues/17#issuecomment-1811957196) ```bash openssl req -newkey rsa:4096 -nodes -keyout key.pem -x509 -days 365 -out certificate.pem python run.py --reload --ssl-certfile=certificate.pem --ssl-keyfile=key.pem ``` ## Docker You need NVIDIA Container Toolkit for Docker, defaults to `controlnet`` ```bash docker build -t lcm-live . docker run -ti -p 7860:7860 --gpus all lcm-live ``` reuse models data from host to avoid downloading them again, you can change `~/.cache/huggingface` to any other directory, but if you use hugingface-cli locally, you can share the same cache ```bash docker run -ti -p 7860:7860 -e HF_HOME=/data -v ~/.cache/huggingface:/data --gpus all lcm-live ``` or with environment variables ```bash docker run -ti -e PIPELINE=txt2imgLoraSDXL -p 7860:7860 --gpus all lcm-live ``` # Development Mode ```bash python run.py --reload ``` # Demo on Hugging Face https://huggingface.co/spaces/radames/Real-Time-Latent-Consistency-Model https://github.com/radames/Real-Time-Latent-Consistency-Model/assets/102277/c4003ac5-e7ff-44c0-97d3-464bb659de70