Spaces:
Runtime error
Runtime error
File size: 4,133 Bytes
ca822d3 759e112 9c5862c ca822d3 9796138 311d898 ca822d3 8c2b71b c5db356 665ac47 b6e0a71 e356def aa4560c c5db356 aa4560c 205e830 dd9c27c aa4560c dd9c27c c5db356 592470d c5db356 205e830 c5db356 3e47535 c5db356 85c91b3 c5db356 85c91b3 c5db356 3e47535 c5db356 b6e0a71 dd9c27c c5db356 205e830 c5db356 205e830 c5db356 205e830 c5db356 205e830 dd9c27c c5db356 b6e0a71 c5db356 aa4560c c5db356 b6e0a71 c5db356 b6e0a71 dd9c27c aa4560c dd9c27c c5db356 aa4560c b6e0a71 6df186b b6e0a71 c5db356 aa4560c 1123781 b6e0a71 6732f1c 665ac47 dd9c27c 9e152c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
---
title: Real-Time Latent Consistency Model Image-to-Image ControlNet
emoji: 🖼️🖼️
colorFrom: gray
colorTo: indigo
sdk: docker
pinned: false
suggested_hardware: a10g-small
disable_embedding: true
---
# Real-Time Latent Consistency Model
This demo showcases [Latent Consistency Model (LCM)](https://latent-consistency-models.github.io/) using [Diffusers](https://huggingface.co/docs/diffusers/using-diffusers/lcm) with a MJPEG stream server. You can read more about LCM + LoRAs with diffusers [here](https://huggingface.co/blog/lcm_lora).
You need a webcam to run this demo. 🤗
See a collecting with live demos [here](https://huggingface.co/collections/latent-consistency/latent-consistency-model-demos-654e90c52adb0688a0acbe6f)
## Running Locally
You need CUDA and Python 3.10, Node > 19, Mac with an M1/M2/M3 chip or Intel Arc GPU
## Install
```bash
python -m venv venv
source venv/bin/activate
pip3 install -r requirements.txt
cd frontend && npm install && npm run build && cd ..
# fastest pipeline
python run.py --reload --pipeline img2imgSD21Turbo
```
# Pipelines
You can build your own pipeline following examples here [here](pipelines),
don't forget to fuild the frontend first
```bash
cd frontend && npm install && npm run build && cd ..
```
# LCM
### Image to Image
```bash
python run.py --reload --pipeline img2img
```
# LCM
### Text to Image
```bash
python run.py --reload --pipeline txt2img
```
### Image to Image ControlNet Canny
```bash
python run.py --reload --pipeline controlnet
```
# LCM + LoRa
Using LCM-LoRA, giving it the super power of doing inference in as little as 4 steps. [Learn more here](https://huggingface.co/blog/lcm_lora) or [technical report](https://huggingface.co/papers/2311.05556)
### Image to Image ControlNet Canny LoRa
```bash
python run.py --reload --pipeline controlnetLoraSD15
```
or SDXL, note that SDXL is slower than SD15 since the inference runs on 1024x1024 images
```bash
python run.py --reload --pipeline controlnetLoraSDXL
```
### Text to Image
```bash
python run.py --reload --pipeline txt2imgLora
```
or
```bash
python run.py --reload --pipeline txt2imgLoraSDXL
```
### Setting environment variables
`TIMEOUT`: limit user session timeout
`SAFETY_CHECKER`: disabled if you want NSFW filter off
`MAX_QUEUE_SIZE`: limit number of users on current app instance
`TORCH_COMPILE`: enable if you want to use torch compile for faster inference works well on A100 GPUs
`USE_TAESD`: enable if you want to use Autoencoder Tiny
If you run using `bash build-run.sh` you can set `PIPELINE` variables to choose the pipeline you want to run
```bash
PIPELINE=txt2imgLoraSDXL bash build-run.sh
```
and setting environment variables
```bash
TIMEOUT=120 SAFETY_CHECKER=True MAX_QUEUE_SIZE=4 python run.py --reload --pipeline txt2imgLoraSDXL
```
If you're running locally and want to test it on Mobile Safari, the webserver needs to be served over HTTPS, or follow this instruction on my [comment](https://github.com/radames/Real-Time-Latent-Consistency-Model/issues/17#issuecomment-1811957196)
```bash
openssl req -newkey rsa:4096 -nodes -keyout key.pem -x509 -days 365 -out certificate.pem
python run.py --reload --ssl-certfile=certificate.pem --ssl-keyfile=key.pem
```
## Docker
You need NVIDIA Container Toolkit for Docker, defaults to `controlnet``
```bash
docker build -t lcm-live .
docker run -ti -p 7860:7860 --gpus all lcm-live
```
reuse models data from host to avoid downloading them again, you can change `~/.cache/huggingface` to any other directory, but if you use hugingface-cli locally, you can share the same cache
```bash
docker run -ti -p 7860:7860 -e HF_HOME=/data -v ~/.cache/huggingface:/data --gpus all lcm-live
```
or with environment variables
```bash
docker run -ti -e PIPELINE=txt2imgLoraSDXL -p 7860:7860 --gpus all lcm-live
```
# Development Mode
```bash
python run.py --reload
```
# Demo on Hugging Face
https://huggingface.co/spaces/radames/Real-Time-Latent-Consistency-Model
https://github.com/radames/Real-Time-Latent-Consistency-Model/assets/102277/c4003ac5-e7ff-44c0-97d3-464bb659de70
|