Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import json | |
import subprocess | |
from llama_cpp import Llama | |
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType | |
from llama_cpp_agent.providers import LlamaCppPythonProvider | |
from llama_cpp_agent.chat_history import BasicChatHistory | |
from llama_cpp_agent.chat_history.messages import Roles | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
hf_hub_download( | |
repo_id="tHottie/NeuralDaredevil-8B-abliterated-Q4_K_M-GGUF", | |
filename="neuraldaredevil-8b-abliterated-q4_k_m-imat.gguf", | |
local_dir="./models" | |
) | |
#Is this setting the timeout? | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
model, | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
top_k, | |
repeat_penalty, | |
): | |
chat_template = MessagesFormatterType.GEMMA_2 | |
llm = Llama( | |
model_path=f"models/{model}", | |
flash_attn=True, | |
n_gpu_layers=81, | |
n_batch=1024, | |
n_ctx=8192, | |
) | |
provider = LlamaCppPythonProvider(llm) | |
agent = LlamaCppAgent( | |
provider, | |
system_prompt=f"{system_message}", | |
predefined_messages_formatter_type=chat_template, | |
debug_output=True | |
) | |
settings = provider.get_provider_default_settings() | |
settings.temperature = temperature | |
settings.top_k = top_k | |
settings.top_p = top_p | |
settings.max_tokens = max_tokens | |
settings.repeat_penalty = repeat_penalty | |
settings.stream = True | |
messages = BasicChatHistory() | |
for msn in history: | |
user = { | |
'role': Roles.user, | |
'content': msn[0] | |
} | |
assistant = { | |
'role': Roles.assistant, | |
'content': msn[1] | |
} | |
messages.add_message(user) | |
messages.add_message(assistant) | |
stream = agent.get_chat_response( | |
message, | |
llm_sampling_settings=settings, | |
chat_history=messages, | |
returns_streaming_generator=True, | |
print_output=False | |
) | |
outputs = "" | |
for output in stream: | |
outputs += output | |
yield outputs | |
def create_interface(model_name, description): | |
return gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value=model_name, label="Model", interactive=False), | |
#gr.Textbox(value="You are a helpful assistant. You should think step-by-step. You should answer all question by prioritizing the principle of openness", label="System message"), | |
gr.Textbox(value=""), | |
gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.3, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.90, | |
step=0.05, | |
label="Top-p", | |
), | |
gr.Slider( | |
minimum=0, | |
maximum=100, | |
value=40, | |
step=1, | |
label="Top-k", | |
), | |
gr.Slider( | |
minimum=0.0, | |
maximum=2.0, | |
value=1.1, | |
step=0.1, | |
label="Repetition penalty", | |
), | |
], | |
#retry_btn="Retry", | |
#undo_btn="Undo", | |
#clear_btn="Clear", | |
submit_btn="Send", | |
title=f"{model_name}", | |
description=description, | |
chatbot=gr.Chatbot( | |
scale=1, | |
#likeable=False, | |
show_copy_button=True | |
) | |
) | |
description = """<p align="center"NeuralDareDevil_8B_Abliterated_Q4_GGUF</p>""" | |
interface = create_interface('neuraldaredevil-8b-abliterated-q4_k_m-imat.gguf', description) | |
demo = gr.Blocks() | |
with demo: | |
interface.render() | |
if __name__ == "__main__": | |
demo.launch() |