Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,023 Bytes
1f3c9c5 578b041 e483c4c 578b041 e483c4c 578b041 1f3c9c5 cce1340 1f3c9c5 cce1340 1f3c9c5 cce1340 1f3c9c5 cce1340 1f3c9c5 cce1340 1f3c9c5 cce1340 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import spaces
import json
import subprocess
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download
hf_hub_download(
repo_id="tHottie/NeuralDaredevil-8B-abliterated-Q4_K_M-GGUF",
filename="neuraldaredevil-8b-abliterated-q4_k_m-imat.gguf",
local_dir="./models"
)
@spaces.GPU(duration=120) #Is this setting the timeout?
def respond(
message,
history: list[tuple[str, str]],
model,
system_message,
max_tokens,
temperature,
top_p,
top_k,
repeat_penalty,
):
chat_template = MessagesFormatterType.GEMMA_2
llm = Llama(
model_path=f"models/{model}",
flash_attn=True,
n_gpu_layers=81,
n_batch=1024,
n_ctx=8192,
)
provider = LlamaCppPythonProvider(llm)
agent = LlamaCppAgent(
provider,
system_prompt=f"{system_message}",
predefined_messages_formatter_type=chat_template,
debug_output=True
)
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
settings.stream = True
messages = BasicChatHistory()
for msn in history:
user = {
'role': Roles.user,
'content': msn[0]
}
assistant = {
'role': Roles.assistant,
'content': msn[1]
}
messages.add_message(user)
messages.add_message(assistant)
stream = agent.get_chat_response(
message,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=True,
print_output=False
)
outputs = ""
for output in stream:
outputs += output
yield outputs
def create_interface(model_name):
return gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value=model_name, label="Model", interactive=False),
gr.Textbox(value="", label="System Message"),
gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.3, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.90, step=0.05, label="Top-p"),
gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k"),
gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty"),
],
submit_btn="Send",
title=model_name,
)
interface = create_interface("neuraldaredevil-8b-abliterated-q4_k_m-imat.gguf")
demo = gr.Blocks()
with demo:
interface.render()
if __name__ == "__main__":
demo.launch()
|