File size: 3,023 Bytes
1f3c9c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
578b041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e483c4c
 
 
 
 
 
 
578b041
 
 
 
 
 
 
 
 
 
 
e483c4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
578b041
1f3c9c5
cce1340
1f3c9c5
 
 
 
cce1340
1f3c9c5
 
cce1340
 
 
1f3c9c5
 
cce1340
1f3c9c5
 
cce1340
1f3c9c5
 
 
 
 
 
cce1340
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import spaces
import json
import subprocess
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download


hf_hub_download(
    repo_id="tHottie/NeuralDaredevil-8B-abliterated-Q4_K_M-GGUF",
    filename="neuraldaredevil-8b-abliterated-q4_k_m-imat.gguf",
    local_dir="./models"
)


@spaces.GPU(duration=120)  #Is this setting the timeout?
def respond(
    message,
    history: list[tuple[str, str]],
    model,
    system_message,
    max_tokens,
    temperature,
    top_p,
    top_k,
    repeat_penalty,
):
    chat_template = MessagesFormatterType.GEMMA_2

    llm = Llama(
        model_path=f"models/{model}",
        flash_attn=True,
        n_gpu_layers=81,
        n_batch=1024,
        n_ctx=8192,
    )
    provider = LlamaCppPythonProvider(llm)

    agent = LlamaCppAgent(
        provider,
        system_prompt=f"{system_message}",
        predefined_messages_formatter_type=chat_template,
        debug_output=True
    )

    settings = provider.get_provider_default_settings()
    settings.temperature = temperature
    settings.top_k = top_k
    settings.top_p = top_p
    settings.max_tokens = max_tokens
    settings.repeat_penalty = repeat_penalty
    settings.stream = True

    messages = BasicChatHistory()

    for msn in history:
        user = {
            'role': Roles.user,
            'content': msn[0]
        }
        assistant = {
            'role': Roles.assistant,
            'content': msn[1]
        }
        messages.add_message(user)
        messages.add_message(assistant)

    stream = agent.get_chat_response(
        message,
        llm_sampling_settings=settings,
        chat_history=messages,
        returns_streaming_generator=True,
        print_output=False
    )

    outputs = ""
    for output in stream:
        outputs += output
        yield outputs


def create_interface(model_name):
    return gr.ChatInterface(
        respond,
        additional_inputs=[
            gr.Textbox(value=model_name, label="Model", interactive=False),
            gr.Textbox(value="", label="System Message"),
            gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
            gr.Slider(minimum=0.1, maximum=4.0, value=0.3, step=0.1, label="Temperature"),
            gr.Slider(minimum=0.1, maximum=1.0, value=0.90, step=0.05, label="Top-p"),
            gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k"),
            gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty"),
        ],
        submit_btn="Send",
        title=model_name,
    )

interface = create_interface("neuraldaredevil-8b-abliterated-q4_k_m-imat.gguf")

demo = gr.Blocks()
with demo:
    interface.render()

if __name__ == "__main__":
    demo.launch()