File size: 11,791 Bytes
a3de142
9123e7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3de142
9123e7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
#use this to make and train a MIRnet model
import cv2
import random
import numpy as np
from glob import glob
from PIL import Image, ImageOps
import matplotlib.pyplot as plt

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

from google.colab import drive
drive.mount('/content/gdrive')


random.seed(10)

IMAGE_SIZE = 128
BATCH_SIZE = 4
MAX_TRAIN_IMAGES = 300


def read_image(image_path):
    image = tf.io.read_file(image_path)
    image = tf.image.decode_png(image, channels=3)
    image.set_shape([None, None, 3])
    image = tf.cast(image, dtype=tf.float32) / 255.0

    return image


def random_crop(low_image, enhanced_image):
    low_image_shape = tf.shape(low_image)[:2]
    low_w = tf.random.uniform(
        shape=(), maxval=low_image_shape[1] - IMAGE_SIZE + 1, dtype=tf.int32
    )
    low_h = tf.random.uniform(
        shape=(), maxval=low_image_shape[0] - IMAGE_SIZE + 1, dtype=tf.int32
    )
    enhanced_w = low_w
    enhanced_h = low_h
    low_image_cropped = low_image[
        low_h : low_h + IMAGE_SIZE, low_w : low_w + IMAGE_SIZE
    ]
    enhanced_image_cropped = enhanced_image[
        enhanced_h : enhanced_h + IMAGE_SIZE, enhanced_w : enhanced_w + IMAGE_SIZE
    ]
    return low_image_cropped, enhanced_image_cropped


def load_data(low_light_image_path, enhanced_image_path):
    low_light_image = read_image(low_light_image_path)
    enhanced_image = read_image(enhanced_image_path)
    low_light_image, enhanced_image = random_crop(low_light_image, enhanced_image)
    return low_light_image, enhanced_image


def get_dataset(low_light_images, enhanced_images):
    dataset = tf.data.Dataset.from_tensor_slices((low_light_images, enhanced_images))

    dataset = dataset.map(load_data, num_parallel_calls=tf.data.AUTOTUNE)

    dataset = dataset.batch(BATCH_SIZE, drop_remainder=True)
    return dataset


train_low_light_images = sorted(glob("/content/gdrive/MyDrive/dataset/lol_dataset/our485/low/*"))[:MAX_TRAIN_IMAGES]
train_enhanced_images = sorted(glob("/content/gdrive/MyDrive/dataset/lol_dataset/our485/high/*"))[:MAX_TRAIN_IMAGES]

val_low_light_images = sorted(glob("/content/gdrive/MyDrive/dataset/lol_dataset/our485/low/*"))[MAX_TRAIN_IMAGES:]
val_enhanced_images = sorted(glob("/content/gdrive/MyDrive/dataset/lol_dataset/our485/high/*"))[MAX_TRAIN_IMAGES:]

test_low_light_images = sorted(glob("/content/gdrive/MyDrive/dataset/lol_dataset/eval15/low/*"))
test_enhanced_images = sorted(glob("/content/gdrive/MyDrive/dataset/lol_dataset/eval15/high/*"))


train_dataset = get_dataset(train_low_light_images, train_enhanced_images)
val_dataset = get_dataset(val_low_light_images, val_enhanced_images)


print("Train Dataset:", train_dataset)
print("Val Dataset:", val_dataset)


def selective_kernel_feature_fusion(
    multi_scale_feature_1, multi_scale_feature_2, multi_scale_feature_3
):
    channels = list(multi_scale_feature_1.shape)[-1]
    combined_feature = layers.Add()(
        [multi_scale_feature_1, multi_scale_feature_2, multi_scale_feature_3]
    )
    gap = layers.GlobalAveragePooling2D()(combined_feature)
    channel_wise_statistics = tf.reshape(gap, shape=(-1, 1, 1, channels))
    compact_feature_representation = layers.Conv2D(
        filters=channels // 8, kernel_size=(1, 1), activation="relu"
    )(channel_wise_statistics)
    feature_descriptor_1 = layers.Conv2D(
        channels, kernel_size=(1, 1), activation="softmax"
    )(compact_feature_representation)
    feature_descriptor_2 = layers.Conv2D(
        channels, kernel_size=(1, 1), activation="softmax"
    )(compact_feature_representation)
    feature_descriptor_3 = layers.Conv2D(
        channels, kernel_size=(1, 1), activation="softmax"
    )(compact_feature_representation)
    feature_1 = multi_scale_feature_1 * feature_descriptor_1
    feature_2 = multi_scale_feature_2 * feature_descriptor_2
    feature_3 = multi_scale_feature_3 * feature_descriptor_3
    aggregated_feature = layers.Add()([feature_1, feature_2, feature_3])
    return aggregated_feature




def spatial_attention_block(input_tensor):
    average_pooling = tf.reduce_max(input_tensor, axis=-1)
    average_pooling = tf.expand_dims(average_pooling, axis=-1)
    max_pooling = tf.reduce_mean(input_tensor, axis=-1)
    max_pooling = tf.expand_dims(max_pooling, axis=-1)
    concatenated = layers.Concatenate(axis=-1)([average_pooling, max_pooling])
    feature_map = layers.Conv2D(1, kernel_size=(1, 1))(concatenated)
    feature_map = tf.nn.sigmoid(feature_map)
    return input_tensor * feature_map


def channel_attention_block(input_tensor):
    channels = list(input_tensor.shape)[-1]
    average_pooling = layers.GlobalAveragePooling2D()(input_tensor)
    feature_descriptor = tf.reshape(average_pooling, shape=(-1, 1, 1, channels))
    feature_activations = layers.Conv2D(
        filters=channels // 8, kernel_size=(1, 1), activation="relu"
    )(feature_descriptor)
    feature_activations = layers.Conv2D(
        filters=channels, kernel_size=(1, 1), activation="sigmoid"
    )(feature_activations)
    return input_tensor * feature_activations


def dual_attention_unit_block(input_tensor):
    channels = list(input_tensor.shape)[-1]
    feature_map = layers.Conv2D(
        channels, kernel_size=(3, 3), padding="same", activation="relu"
    )(input_tensor)
    feature_map = layers.Conv2D(channels, kernel_size=(3, 3), padding="same")(
        feature_map
    )
    channel_attention = channel_attention_block(feature_map)
    spatial_attention = spatial_attention_block(feature_map)
    concatenation = layers.Concatenate(axis=-1)([channel_attention, spatial_attention])
    concatenation = layers.Conv2D(channels, kernel_size=(1, 1))(concatenation)
    return layers.Add()([input_tensor, concatenation])


# Recursive Residual Modules


def down_sampling_module(input_tensor):
    channels = list(input_tensor.shape)[-1]
    main_branch = layers.Conv2D(channels, kernel_size=(1, 1), activation="relu")(
        input_tensor
    )
    main_branch = layers.Conv2D(
        channels, kernel_size=(3, 3), padding="same", activation="relu"
    )(main_branch)
    main_branch = layers.MaxPooling2D()(main_branch)
    main_branch = layers.Conv2D(channels * 2, kernel_size=(1, 1))(main_branch)
    skip_branch = layers.MaxPooling2D()(input_tensor)
    skip_branch = layers.Conv2D(channels * 2, kernel_size=(1, 1))(skip_branch)
    return layers.Add()([skip_branch, main_branch])


def up_sampling_module(input_tensor):
    channels = list(input_tensor.shape)[-1]
    main_branch = layers.Conv2D(channels, kernel_size=(1, 1), activation="relu")(
        input_tensor
    )
    main_branch = layers.Conv2D(
        channels, kernel_size=(3, 3), padding="same", activation="relu"
    )(main_branch)
    main_branch = layers.UpSampling2D()(main_branch)
    main_branch = layers.Conv2D(channels // 2, kernel_size=(1, 1))(main_branch)
    skip_branch = layers.UpSampling2D()(input_tensor)
    skip_branch = layers.Conv2D(channels // 2, kernel_size=(1, 1))(skip_branch)
    return layers.Add()([skip_branch, main_branch])


# MRB Block
    
def multi_scale_residual_block(input_tensor, channels):
    # features
    level1 = input_tensor
    level2 = down_sampling_module(input_tensor)
    level3 = down_sampling_module(level2)
    # DAU
    level1_dau = dual_attention_unit_block(level1)
    level2_dau = dual_attention_unit_block(level2)
    level3_dau = dual_attention_unit_block(level3)
    # SKFF
    level1_skff = selective_kernel_feature_fusion(
        level1_dau,
        up_sampling_module(level2_dau),
        up_sampling_module(up_sampling_module(level3_dau)),
    )
    level2_skff = selective_kernel_feature_fusion(
        down_sampling_module(level1_dau), level2_dau, up_sampling_module(level3_dau)
    )
    level3_skff = selective_kernel_feature_fusion(
        down_sampling_module(down_sampling_module(level1_dau)),
        down_sampling_module(level2_dau),
        level3_dau,
    )
    # DAU 2
    level1_dau_2 = dual_attention_unit_block(level1_skff)
    level2_dau_2 = up_sampling_module((dual_attention_unit_block(level2_skff)))
    level3_dau_2 = up_sampling_module(
        up_sampling_module(dual_attention_unit_block(level3_skff))
    )
    # SKFF 2
    skff_ = selective_kernel_feature_fusion(level1_dau_2, level2_dau_2, level3_dau_2)
    conv = layers.Conv2D(channels, kernel_size=(3, 3), padding="same")(skff_)
    return layers.Add()([input_tensor, conv])




def recursive_residual_group(input_tensor, num_mrb, channels):
    conv1 = layers.Conv2D(channels, kernel_size=(3, 3), padding="same")(input_tensor)
    for _ in range(num_mrb):
        conv1 = multi_scale_residual_block(conv1, channels)
    conv2 = layers.Conv2D(channels, kernel_size=(3, 3), padding="same")(conv1)
    return layers.Add()([conv2, input_tensor])


def mirnet_model(num_rrg, num_mrb, channels):
    input_tensor = keras.Input(shape=[None, None, 3])
    x1 = layers.Conv2D(channels, kernel_size=(3, 3), padding="same")(input_tensor)
    for _ in range(num_rrg):
        x1 = recursive_residual_group(x1, num_mrb, channels)
    conv = layers.Conv2D(3, kernel_size=(3, 3), padding="same")(x1)
    output_tensor = layers.Add()([input_tensor, conv])
    return keras.Model(input_tensor, output_tensor)


model = mirnet_model(num_rrg=3, num_mrb=2, channels=64)


def charbonnier_loss(y_true, y_pred):
    return tf.reduce_mean(tf.sqrt(tf.square(y_true - y_pred) + tf.square(1e-3)))


def peak_signal_noise_ratio(y_true, y_pred):
    return tf.image.psnr(y_pred, y_true, max_val=255.0)


optimizer = keras.optimizers.Adam(learning_rate=1e-4)
model.compile(
    optimizer=optimizer, loss=charbonnier_loss, metrics=[peak_signal_noise_ratio]
)

history = model.fit(
    train_dataset,
    validation_data=val_dataset,
    #epochs traning cycles set krna k lia
    epochs=1,
    callbacks=[
        keras.callbacks.ReduceLROnPlateau(
            monitor="val_peak_signal_noise_ratio",
            factor=0.5,
            patience=5,
            verbose=1,
            min_delta=1e-7,
            mode="max",
        )
    ],
)

plt.plot(history.history["loss"], label="train_loss")
plt.plot(history.history["val_loss"], label="val_loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.title("Train and Validation Losses Over Epochs", fontsize=14)
plt.legend()
plt.grid()
plt.show()


plt.plot(history.history["peak_signal_noise_ratio"], label="train_psnr")
plt.plot(history.history["val_peak_signal_noise_ratio"], label="val_psnr")
plt.xlabel("Epochs")
plt.ylabel("PSNR")
plt.title("Train and Validation PSNR Over Epochs", fontsize=14)
plt.legend()
plt.grid()
plt.show()




def plot_results(images, titles, figure_size=(12, 12)):
    fig = plt.figure(figsize=figure_size)
    for i in range(len(images)):
        fig.add_subplot(1, len(images), i + 1).set_title(titles[i])
        _ = plt.imshow(images[i])
        plt.axis("off")
    plt.show()


def infer(original_image):
    image = keras.preprocessing.image.img_to_array(original_image)
    image = image.astype("float16") / 255.0
    image = np.expand_dims(image, axis=0)
    output = model.predict(image)
    output_image = output[0] * 255.0
    output_image = output_image.clip(0, 255)
    output_image = output_image.reshape(
        (np.shape(output_image)[0], np.shape(output_image)[1], 3)
    )
    output_image = Image.fromarray(np.uint8(output_image))
    original_image = Image.fromarray(np.uint8(original_image))
    return output_image



for low_light_image in random.sample(test_low_light_images, 2):
    original_image = Image.open(low_light_image)
    enhanced_image = infer(original_image)
    plot_results(
        [original_image, ImageOps.autocontrast(original_image), enhanced_image],
        ["Original", "PIL Autocontrast", "MIRNet Enhanced"],
        (20, 12),
    )