Spaces:
Runtime error
Runtime error
File size: 11,791 Bytes
a3de142 9123e7a a3de142 9123e7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
#use this to make and train a MIRnet model
import cv2
import random
import numpy as np
from glob import glob
from PIL import Image, ImageOps
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from google.colab import drive
drive.mount('/content/gdrive')
random.seed(10)
IMAGE_SIZE = 128
BATCH_SIZE = 4
MAX_TRAIN_IMAGES = 300
def read_image(image_path):
image = tf.io.read_file(image_path)
image = tf.image.decode_png(image, channels=3)
image.set_shape([None, None, 3])
image = tf.cast(image, dtype=tf.float32) / 255.0
return image
def random_crop(low_image, enhanced_image):
low_image_shape = tf.shape(low_image)[:2]
low_w = tf.random.uniform(
shape=(), maxval=low_image_shape[1] - IMAGE_SIZE + 1, dtype=tf.int32
)
low_h = tf.random.uniform(
shape=(), maxval=low_image_shape[0] - IMAGE_SIZE + 1, dtype=tf.int32
)
enhanced_w = low_w
enhanced_h = low_h
low_image_cropped = low_image[
low_h : low_h + IMAGE_SIZE, low_w : low_w + IMAGE_SIZE
]
enhanced_image_cropped = enhanced_image[
enhanced_h : enhanced_h + IMAGE_SIZE, enhanced_w : enhanced_w + IMAGE_SIZE
]
return low_image_cropped, enhanced_image_cropped
def load_data(low_light_image_path, enhanced_image_path):
low_light_image = read_image(low_light_image_path)
enhanced_image = read_image(enhanced_image_path)
low_light_image, enhanced_image = random_crop(low_light_image, enhanced_image)
return low_light_image, enhanced_image
def get_dataset(low_light_images, enhanced_images):
dataset = tf.data.Dataset.from_tensor_slices((low_light_images, enhanced_images))
dataset = dataset.map(load_data, num_parallel_calls=tf.data.AUTOTUNE)
dataset = dataset.batch(BATCH_SIZE, drop_remainder=True)
return dataset
train_low_light_images = sorted(glob("/content/gdrive/MyDrive/dataset/lol_dataset/our485/low/*"))[:MAX_TRAIN_IMAGES]
train_enhanced_images = sorted(glob("/content/gdrive/MyDrive/dataset/lol_dataset/our485/high/*"))[:MAX_TRAIN_IMAGES]
val_low_light_images = sorted(glob("/content/gdrive/MyDrive/dataset/lol_dataset/our485/low/*"))[MAX_TRAIN_IMAGES:]
val_enhanced_images = sorted(glob("/content/gdrive/MyDrive/dataset/lol_dataset/our485/high/*"))[MAX_TRAIN_IMAGES:]
test_low_light_images = sorted(glob("/content/gdrive/MyDrive/dataset/lol_dataset/eval15/low/*"))
test_enhanced_images = sorted(glob("/content/gdrive/MyDrive/dataset/lol_dataset/eval15/high/*"))
train_dataset = get_dataset(train_low_light_images, train_enhanced_images)
val_dataset = get_dataset(val_low_light_images, val_enhanced_images)
print("Train Dataset:", train_dataset)
print("Val Dataset:", val_dataset)
def selective_kernel_feature_fusion(
multi_scale_feature_1, multi_scale_feature_2, multi_scale_feature_3
):
channels = list(multi_scale_feature_1.shape)[-1]
combined_feature = layers.Add()(
[multi_scale_feature_1, multi_scale_feature_2, multi_scale_feature_3]
)
gap = layers.GlobalAveragePooling2D()(combined_feature)
channel_wise_statistics = tf.reshape(gap, shape=(-1, 1, 1, channels))
compact_feature_representation = layers.Conv2D(
filters=channels // 8, kernel_size=(1, 1), activation="relu"
)(channel_wise_statistics)
feature_descriptor_1 = layers.Conv2D(
channels, kernel_size=(1, 1), activation="softmax"
)(compact_feature_representation)
feature_descriptor_2 = layers.Conv2D(
channels, kernel_size=(1, 1), activation="softmax"
)(compact_feature_representation)
feature_descriptor_3 = layers.Conv2D(
channels, kernel_size=(1, 1), activation="softmax"
)(compact_feature_representation)
feature_1 = multi_scale_feature_1 * feature_descriptor_1
feature_2 = multi_scale_feature_2 * feature_descriptor_2
feature_3 = multi_scale_feature_3 * feature_descriptor_3
aggregated_feature = layers.Add()([feature_1, feature_2, feature_3])
return aggregated_feature
def spatial_attention_block(input_tensor):
average_pooling = tf.reduce_max(input_tensor, axis=-1)
average_pooling = tf.expand_dims(average_pooling, axis=-1)
max_pooling = tf.reduce_mean(input_tensor, axis=-1)
max_pooling = tf.expand_dims(max_pooling, axis=-1)
concatenated = layers.Concatenate(axis=-1)([average_pooling, max_pooling])
feature_map = layers.Conv2D(1, kernel_size=(1, 1))(concatenated)
feature_map = tf.nn.sigmoid(feature_map)
return input_tensor * feature_map
def channel_attention_block(input_tensor):
channels = list(input_tensor.shape)[-1]
average_pooling = layers.GlobalAveragePooling2D()(input_tensor)
feature_descriptor = tf.reshape(average_pooling, shape=(-1, 1, 1, channels))
feature_activations = layers.Conv2D(
filters=channels // 8, kernel_size=(1, 1), activation="relu"
)(feature_descriptor)
feature_activations = layers.Conv2D(
filters=channels, kernel_size=(1, 1), activation="sigmoid"
)(feature_activations)
return input_tensor * feature_activations
def dual_attention_unit_block(input_tensor):
channels = list(input_tensor.shape)[-1]
feature_map = layers.Conv2D(
channels, kernel_size=(3, 3), padding="same", activation="relu"
)(input_tensor)
feature_map = layers.Conv2D(channels, kernel_size=(3, 3), padding="same")(
feature_map
)
channel_attention = channel_attention_block(feature_map)
spatial_attention = spatial_attention_block(feature_map)
concatenation = layers.Concatenate(axis=-1)([channel_attention, spatial_attention])
concatenation = layers.Conv2D(channels, kernel_size=(1, 1))(concatenation)
return layers.Add()([input_tensor, concatenation])
# Recursive Residual Modules
def down_sampling_module(input_tensor):
channels = list(input_tensor.shape)[-1]
main_branch = layers.Conv2D(channels, kernel_size=(1, 1), activation="relu")(
input_tensor
)
main_branch = layers.Conv2D(
channels, kernel_size=(3, 3), padding="same", activation="relu"
)(main_branch)
main_branch = layers.MaxPooling2D()(main_branch)
main_branch = layers.Conv2D(channels * 2, kernel_size=(1, 1))(main_branch)
skip_branch = layers.MaxPooling2D()(input_tensor)
skip_branch = layers.Conv2D(channels * 2, kernel_size=(1, 1))(skip_branch)
return layers.Add()([skip_branch, main_branch])
def up_sampling_module(input_tensor):
channels = list(input_tensor.shape)[-1]
main_branch = layers.Conv2D(channels, kernel_size=(1, 1), activation="relu")(
input_tensor
)
main_branch = layers.Conv2D(
channels, kernel_size=(3, 3), padding="same", activation="relu"
)(main_branch)
main_branch = layers.UpSampling2D()(main_branch)
main_branch = layers.Conv2D(channels // 2, kernel_size=(1, 1))(main_branch)
skip_branch = layers.UpSampling2D()(input_tensor)
skip_branch = layers.Conv2D(channels // 2, kernel_size=(1, 1))(skip_branch)
return layers.Add()([skip_branch, main_branch])
# MRB Block
def multi_scale_residual_block(input_tensor, channels):
# features
level1 = input_tensor
level2 = down_sampling_module(input_tensor)
level3 = down_sampling_module(level2)
# DAU
level1_dau = dual_attention_unit_block(level1)
level2_dau = dual_attention_unit_block(level2)
level3_dau = dual_attention_unit_block(level3)
# SKFF
level1_skff = selective_kernel_feature_fusion(
level1_dau,
up_sampling_module(level2_dau),
up_sampling_module(up_sampling_module(level3_dau)),
)
level2_skff = selective_kernel_feature_fusion(
down_sampling_module(level1_dau), level2_dau, up_sampling_module(level3_dau)
)
level3_skff = selective_kernel_feature_fusion(
down_sampling_module(down_sampling_module(level1_dau)),
down_sampling_module(level2_dau),
level3_dau,
)
# DAU 2
level1_dau_2 = dual_attention_unit_block(level1_skff)
level2_dau_2 = up_sampling_module((dual_attention_unit_block(level2_skff)))
level3_dau_2 = up_sampling_module(
up_sampling_module(dual_attention_unit_block(level3_skff))
)
# SKFF 2
skff_ = selective_kernel_feature_fusion(level1_dau_2, level2_dau_2, level3_dau_2)
conv = layers.Conv2D(channels, kernel_size=(3, 3), padding="same")(skff_)
return layers.Add()([input_tensor, conv])
def recursive_residual_group(input_tensor, num_mrb, channels):
conv1 = layers.Conv2D(channels, kernel_size=(3, 3), padding="same")(input_tensor)
for _ in range(num_mrb):
conv1 = multi_scale_residual_block(conv1, channels)
conv2 = layers.Conv2D(channels, kernel_size=(3, 3), padding="same")(conv1)
return layers.Add()([conv2, input_tensor])
def mirnet_model(num_rrg, num_mrb, channels):
input_tensor = keras.Input(shape=[None, None, 3])
x1 = layers.Conv2D(channels, kernel_size=(3, 3), padding="same")(input_tensor)
for _ in range(num_rrg):
x1 = recursive_residual_group(x1, num_mrb, channels)
conv = layers.Conv2D(3, kernel_size=(3, 3), padding="same")(x1)
output_tensor = layers.Add()([input_tensor, conv])
return keras.Model(input_tensor, output_tensor)
model = mirnet_model(num_rrg=3, num_mrb=2, channels=64)
def charbonnier_loss(y_true, y_pred):
return tf.reduce_mean(tf.sqrt(tf.square(y_true - y_pred) + tf.square(1e-3)))
def peak_signal_noise_ratio(y_true, y_pred):
return tf.image.psnr(y_pred, y_true, max_val=255.0)
optimizer = keras.optimizers.Adam(learning_rate=1e-4)
model.compile(
optimizer=optimizer, loss=charbonnier_loss, metrics=[peak_signal_noise_ratio]
)
history = model.fit(
train_dataset,
validation_data=val_dataset,
#epochs traning cycles set krna k lia
epochs=1,
callbacks=[
keras.callbacks.ReduceLROnPlateau(
monitor="val_peak_signal_noise_ratio",
factor=0.5,
patience=5,
verbose=1,
min_delta=1e-7,
mode="max",
)
],
)
plt.plot(history.history["loss"], label="train_loss")
plt.plot(history.history["val_loss"], label="val_loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.title("Train and Validation Losses Over Epochs", fontsize=14)
plt.legend()
plt.grid()
plt.show()
plt.plot(history.history["peak_signal_noise_ratio"], label="train_psnr")
plt.plot(history.history["val_peak_signal_noise_ratio"], label="val_psnr")
plt.xlabel("Epochs")
plt.ylabel("PSNR")
plt.title("Train and Validation PSNR Over Epochs", fontsize=14)
plt.legend()
plt.grid()
plt.show()
def plot_results(images, titles, figure_size=(12, 12)):
fig = plt.figure(figsize=figure_size)
for i in range(len(images)):
fig.add_subplot(1, len(images), i + 1).set_title(titles[i])
_ = plt.imshow(images[i])
plt.axis("off")
plt.show()
def infer(original_image):
image = keras.preprocessing.image.img_to_array(original_image)
image = image.astype("float16") / 255.0
image = np.expand_dims(image, axis=0)
output = model.predict(image)
output_image = output[0] * 255.0
output_image = output_image.clip(0, 255)
output_image = output_image.reshape(
(np.shape(output_image)[0], np.shape(output_image)[1], 3)
)
output_image = Image.fromarray(np.uint8(output_image))
original_image = Image.fromarray(np.uint8(original_image))
return output_image
for low_light_image in random.sample(test_low_light_images, 2):
original_image = Image.open(low_light_image)
enhanced_image = infer(original_image)
plot_results(
[original_image, ImageOps.autocontrast(original_image), enhanced_image],
["Original", "PIL Autocontrast", "MIRNet Enhanced"],
(20, 12),
) |