Spaces:
Sleeping
Sleeping
pragneshbarik
commited on
Commit
·
cebfd3c
1
Parent(s):
8b18fd0
implemented RAG
Browse files- .gitignore +4 -1
- __pycache__/mistral7b.cpython-310.pyc +0 -0
- app.py +86 -23
- chat_log.txt +0 -0
- id_log.txt +0 -0
- requirements.txt +2 -0
.gitignore
CHANGED
@@ -1 +1,4 @@
|
|
1 |
-
.env
|
|
|
|
|
|
|
|
1 |
+
.env
|
2 |
+
*.ipynb
|
3 |
+
*.csv
|
4 |
+
*.json
|
__pycache__/mistral7b.cpython-310.pyc
ADDED
Binary file (1.22 kB). View file
|
|
app.py
CHANGED
@@ -1,13 +1,56 @@
|
|
1 |
import streamlit as st
|
2 |
from mistral7b import mistral
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
st.set_page_config(
|
5 |
page_title="Ikigai Chat",
|
|
|
6 |
)
|
7 |
|
8 |
-
import time
|
9 |
-
|
10 |
-
|
11 |
if "messages" not in st.session_state:
|
12 |
st.session_state.messages = []
|
13 |
|
@@ -17,7 +60,6 @@ if "tokens_used" not in st.session_state:
|
|
17 |
if "inference_time" not in st.session_state:
|
18 |
st.session_state.inference_time = [0.00]
|
19 |
|
20 |
-
|
21 |
if "temp" not in st.session_state:
|
22 |
st.session_state.temp = 0.8
|
23 |
|
@@ -25,24 +67,34 @@ if "history" not in st.session_state:
|
|
25 |
st.session_state.history = [["""
|
26 |
You are not mistral AI, but rather a chat bot trained at Ikigai Labs, when ever asked you need to answer as ikigai Labs' assistant.
|
27 |
Ikigai helps modern analysts and operations teams automate data-intensive business, finance, analytics, and supply-chain operations.
|
28 |
-
The company's Inventory Ops automates inventory tracking and monitoring by creating a single, real-time view of inventory across all locations and channels.
|
|
|
|
|
29 |
"""
|
30 |
Yes, you are correct. Ikigai Labs is a company that specializes in helping
|
31 |
modern analysts and operations teams automate data-intensive business, finance, analytics,
|
32 |
and supply chain operations. One of their products is Inventory Ops, which automates inventory
|
33 |
tracking and monitoring by creating a single, real-time view of inventory across all locations and channels.
|
34 |
This helps businesses optimize their inventory levels and reduce costs.
|
35 |
-
Is there anything else you would like to know about Ikigai Labs or their products?
|
36 |
-
|
37 |
-
|
38 |
-
"""]]
|
39 |
|
40 |
if "top_k" not in st.session_state:
|
41 |
-
st.session_state.top_k =
|
42 |
|
43 |
if "repetion_penalty" not in st.session_state :
|
44 |
st.session_state.repetion_penalty = 1
|
|
|
|
|
|
|
45 |
with st.sidebar:
|
|
|
|
|
|
|
|
|
|
|
46 |
st.markdown("# Model Analytics")
|
47 |
|
48 |
st.write("Tokens used :", st.session_state['tokens_used'])
|
@@ -68,23 +120,20 @@ with st.sidebar:
|
|
68 |
label="Repetion Penalty", min_value=0., max_value=1., step=0.1, value=1.
|
69 |
)
|
70 |
|
71 |
-
st.markdown("
|
|
|
|
|
72 |
|
73 |
-
st.markdown("# Retrieval Settings")
|
74 |
-
st.slider(label="Documents to retrieve",
|
75 |
-
min_value=1, max_value=10, value=3)
|
76 |
-
|
77 |
-
st.info("**2023 ©️ Pragnesh Barik**")
|
78 |
-
|
79 |
-
|
80 |
st.image("ikigai.svg")
|
81 |
st.title("Ikigai Chat")
|
|
|
82 |
|
83 |
with st.expander("What is Ikigai Chat ?"):
|
84 |
st.info("""Ikigai Chat is a vector database powered chat agent, it works on the principle of
|
85 |
of Retrieval Augmented Generation (RAG), Its primary function revolves around maintaining an extensive repository of Ikigai Docs and providing users with answers that align with their queries.
|
86 |
This approach ensures a more refined and tailored response to user inquiries.""")
|
87 |
-
|
|
|
88 |
|
89 |
for message in st.session_state.messages:
|
90 |
with st.chat_message(message["role"]):
|
@@ -95,8 +144,14 @@ if prompt := st.chat_input("Chat with Ikigai Docs..."):
|
|
95 |
st.chat_message("user").markdown(prompt)
|
96 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
97 |
|
98 |
-
|
99 |
tick = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
with st.spinner("Generating response...") :
|
101 |
response = mistral(prompt, st.session_state.history,
|
102 |
temperature=st.session_state.temp, max_new_tokens=st.session_state.max_tokens)
|
@@ -110,8 +165,16 @@ if prompt := st.chat_input("Chat with Ikigai Docs..."):
|
|
110 |
st.session_state["tokens_used"] = len_response + \
|
111 |
st.session_state["tokens_used"]
|
112 |
|
|
|
113 |
with st.chat_message("assistant"):
|
114 |
-
st.
|
|
|
|
|
|
|
115 |
st.session_state.history.append([prompt, response])
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from mistral7b import mistral
|
3 |
+
import time
|
4 |
+
import pandas as pd
|
5 |
+
import pinecone
|
6 |
+
import os
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
from sentence_transformers import SentenceTransformer
|
9 |
+
load_dotenv()
|
10 |
+
|
11 |
+
PINECONE_TOKEN = os.getenv('PINECONE_TOKEN')
|
12 |
+
|
13 |
+
pinecone.init(
|
14 |
+
api_key=PINECONE_TOKEN,
|
15 |
+
environment='gcp-starter'
|
16 |
+
)
|
17 |
+
|
18 |
+
pinecone_index = pinecone.Index('ikigai-chat')
|
19 |
+
text_vectorizer = SentenceTransformer('all-distilroberta-v1')
|
20 |
+
|
21 |
+
def gen_augmented_prompt(prompt, top_k) :
|
22 |
+
query_vector = text_vectorizer.encode(prompt).tolist()
|
23 |
+
res = pinecone_index.query(vector=query_vector, top_k=top_k, include_metadata=True)
|
24 |
+
matches = res['matches']
|
25 |
+
|
26 |
+
context = ""
|
27 |
+
links = []
|
28 |
+
for match in matches :
|
29 |
+
context+=match["metadata"]["chunk"] + "\n\n"
|
30 |
+
links.append(match["metadata"]["link"])
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
generated_prompt = f"""
|
35 |
+
FOR THIS GIVEN CONTEXT {context},
|
36 |
+
|
37 |
+
|
38 |
+
ANSWER THE FOLLOWING PROMPT {prompt}
|
39 |
+
"""
|
40 |
+
return generated_prompt, links
|
41 |
+
|
42 |
+
data = {
|
43 |
+
"Attribute": ["LLM", "Text Vectorizer", "Vector Database","CPU", "System RAM"],
|
44 |
+
"Information": ["Mistral-7B-Instruct-v0.1 (more models soon)","all-distilroberta-v1", "Hosted Pinecone" ,"2 vCPU", "16 GB"]
|
45 |
+
}
|
46 |
+
df = pd.DataFrame(data)
|
47 |
+
|
48 |
|
49 |
st.set_page_config(
|
50 |
page_title="Ikigai Chat",
|
51 |
+
page_icon="🤖",
|
52 |
)
|
53 |
|
|
|
|
|
|
|
54 |
if "messages" not in st.session_state:
|
55 |
st.session_state.messages = []
|
56 |
|
|
|
60 |
if "inference_time" not in st.session_state:
|
61 |
st.session_state.inference_time = [0.00]
|
62 |
|
|
|
63 |
if "temp" not in st.session_state:
|
64 |
st.session_state.temp = 0.8
|
65 |
|
|
|
67 |
st.session_state.history = [["""
|
68 |
You are not mistral AI, but rather a chat bot trained at Ikigai Labs, when ever asked you need to answer as ikigai Labs' assistant.
|
69 |
Ikigai helps modern analysts and operations teams automate data-intensive business, finance, analytics, and supply-chain operations.
|
70 |
+
The company's Inventory Ops automates inventory tracking and monitoring by creating a single, real-time view of inventory across all locations and channels.
|
71 |
+
""",
|
72 |
+
|
73 |
"""
|
74 |
Yes, you are correct. Ikigai Labs is a company that specializes in helping
|
75 |
modern analysts and operations teams automate data-intensive business, finance, analytics,
|
76 |
and supply chain operations. One of their products is Inventory Ops, which automates inventory
|
77 |
tracking and monitoring by creating a single, real-time view of inventory across all locations and channels.
|
78 |
This helps businesses optimize their inventory levels and reduce costs.
|
79 |
+
Is there anything else you would like to know about Ikigai Labs or their products?"""],
|
80 |
+
["""You are ikigai chat from now on, so answer accordingly""",
|
81 |
+
"""Sure, I will do my best to answer your questions as Ikigai Chat.
|
82 |
+
Let me know if you have any specific questions about Ikigai Labs or our products."""]]
|
83 |
|
84 |
if "top_k" not in st.session_state:
|
85 |
+
st.session_state.top_k = 3
|
86 |
|
87 |
if "repetion_penalty" not in st.session_state :
|
88 |
st.session_state.repetion_penalty = 1
|
89 |
+
|
90 |
+
if "rag_enabled" not in st.session_state :
|
91 |
+
st.session_state.rag_enabled = True
|
92 |
with st.sidebar:
|
93 |
+
st.markdown("# Retrieval Settings")
|
94 |
+
st.session_state.rag_enabled = st.toggle("Activate RAG")
|
95 |
+
st.session_state.top_k = st.slider(label="Documents to retrieve",
|
96 |
+
min_value=1, max_value=10, value=3, disabled=not st.session_state.rag_enabled)
|
97 |
+
st.markdown("---")
|
98 |
st.markdown("# Model Analytics")
|
99 |
|
100 |
st.write("Tokens used :", st.session_state['tokens_used'])
|
|
|
120 |
label="Repetion Penalty", min_value=0., max_value=1., step=0.1, value=1.
|
121 |
)
|
122 |
|
123 |
+
st.markdown("""
|
124 |
+
> **2023 ©️ Pragnesh Barik**
|
125 |
+
""")
|
126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
st.image("ikigai.svg")
|
128 |
st.title("Ikigai Chat")
|
129 |
+
st.caption("Maintained and developed by Pragnesh Barik.")
|
130 |
|
131 |
with st.expander("What is Ikigai Chat ?"):
|
132 |
st.info("""Ikigai Chat is a vector database powered chat agent, it works on the principle of
|
133 |
of Retrieval Augmented Generation (RAG), Its primary function revolves around maintaining an extensive repository of Ikigai Docs and providing users with answers that align with their queries.
|
134 |
This approach ensures a more refined and tailored response to user inquiries.""")
|
135 |
+
|
136 |
+
st.table(df)
|
137 |
|
138 |
for message in st.session_state.messages:
|
139 |
with st.chat_message(message["role"]):
|
|
|
144 |
st.chat_message("user").markdown(prompt)
|
145 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
146 |
|
147 |
+
|
148 |
tick = time.time()
|
149 |
+
|
150 |
+
links = []
|
151 |
+
if st.session_state.rag_enabled :
|
152 |
+
with st.spinner("Fetching relevent documents from Ikigai Docs...."):
|
153 |
+
prompt, links = gen_augmented_prompt(prompt=prompt, top_k=st.session_state.top_k)
|
154 |
+
|
155 |
with st.spinner("Generating response...") :
|
156 |
response = mistral(prompt, st.session_state.history,
|
157 |
temperature=st.session_state.temp, max_new_tokens=st.session_state.max_tokens)
|
|
|
165 |
st.session_state["tokens_used"] = len_response + \
|
166 |
st.session_state["tokens_used"]
|
167 |
|
168 |
+
formatted_links = ", ".join(links)
|
169 |
with st.chat_message("assistant"):
|
170 |
+
if st.session_state.rag_enabled :
|
171 |
+
st.markdown(response + f"""\n\nFetched from :\n {formatted_links}""")
|
172 |
+
else :
|
173 |
+
st.markdown(response)
|
174 |
st.session_state.history.append([prompt, response])
|
175 |
+
|
176 |
+
if st.session_state.rag_enabled :
|
177 |
+
st.session_state.messages.append(
|
178 |
+
{"role": "assistant", "content": response + f"""\n\nFetched from :\n {formatted_links}"""})
|
179 |
+
else :
|
180 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
chat_log.txt
DELETED
File without changes
|
id_log.txt
DELETED
File without changes
|
requirements.txt
CHANGED
@@ -73,3 +73,5 @@ validators==0.22.0
|
|
73 |
watchdog==3.0.0
|
74 |
wcwidth==0.2.6
|
75 |
zipp==3.17.0
|
|
|
|
|
|
73 |
watchdog==3.0.0
|
74 |
wcwidth==0.2.6
|
75 |
zipp==3.17.0
|
76 |
+
sentence-transformers==2.2.2
|
77 |
+
pinecone-client==2.2.4
|