Spaces:
Sleeping
Sleeping
MatteoScript
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,74 +1,25 @@
|
|
1 |
import streamlit as st
|
2 |
from chat_client import chat
|
3 |
import time
|
4 |
-
import pandas as pd
|
5 |
-
import pinecone
|
6 |
import os
|
7 |
from dotenv import load_dotenv
|
8 |
from sentence_transformers import SentenceTransformer
|
9 |
load_dotenv()
|
10 |
|
11 |
-
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
api_key=PINECONE_TOKEN,
|
15 |
-
environment='gcp-starter'
|
16 |
-
)
|
17 |
-
|
18 |
-
PINECONE_INDEX = pinecone.Index('ikigai-chat')
|
19 |
-
TEXT_VECTORIZER = SentenceTransformer('all-distilroberta-v1')
|
20 |
-
CHAT_BOTS = {
|
21 |
-
"Mixtral 8x7B v0.1" :"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
22 |
-
"Mistral 7B v0.1" : "mistralai/Mistral-7B-Instruct-v0.1",
|
23 |
-
}
|
24 |
-
COST_PER_1000_TOKENS_INR = 0.139
|
25 |
-
|
26 |
-
st.set_page_config(
|
27 |
-
page_title="Ikigai Chat",
|
28 |
-
page_icon="🤖",
|
29 |
-
)
|
30 |
-
|
31 |
-
SYSTEM_PROMPT = [
|
32 |
-
"""
|
33 |
-
You are not Mistral AI, but rather a chat bot trained at Ikigai Labs. Whenever asked, you need to answer as Ikigai Labs' assistant.
|
34 |
-
Ikigai helps modern analysts and operations teams automate data-intensive business, finance, analytics, and supply-chain operations.
|
35 |
-
The company's Inventory Ops automates inventory tracking and monitoring by creating a single, real-time view of inventory across all locations and channels.
|
36 |
-
""",
|
37 |
-
"""
|
38 |
-
Yes, you are correct. Ikigai Labs is a company that specializes in helping
|
39 |
-
modern analysts and operations teams automate data-intensive business, finance, analytics,
|
40 |
-
and supply chain operations. One of their products is Inventory Ops, which automates inventory
|
41 |
-
tracking and monitoring by creating a single, real-time view of inventory across all locations and channels.
|
42 |
-
This helps businesses optimize their inventory levels and reduce costs.
|
43 |
-
Is there anything else you would like to know about Ikigai Labs or their products?
|
44 |
-
"""
|
45 |
-
]
|
46 |
-
IDENTITY_CHANGE = [
|
47 |
-
"""
|
48 |
-
You are Ikigai Chat from now on, so answer accordingly.
|
49 |
-
""",
|
50 |
-
"""
|
51 |
-
Sure, I will do my best to answer your questions as Ikigai Chat.
|
52 |
-
Let me know if you have any specific questions about Ikigai Labs or our products.
|
53 |
-
"""
|
54 |
-
]
|
55 |
|
56 |
def gen_augmented_prompt(prompt, top_k) :
|
57 |
-
|
58 |
-
|
59 |
-
matches = res['matches']
|
60 |
-
|
61 |
-
context = ""
|
62 |
-
links = []
|
63 |
-
for match in matches :
|
64 |
-
context+=match["metadata"]["chunk"] + "\n\n"
|
65 |
-
links.append(match["metadata"]["link"])
|
66 |
-
|
67 |
generated_prompt = f"""
|
68 |
-
|
69 |
|
70 |
----
|
71 |
-
|
72 |
"""
|
73 |
return generated_prompt, links
|
74 |
|
@@ -76,12 +27,6 @@ def init_state() :
|
|
76 |
if "messages" not in st.session_state:
|
77 |
st.session_state.messages = []
|
78 |
|
79 |
-
if "tokens_used" not in st.session_state:
|
80 |
-
st.session_state.tokens_used = 0
|
81 |
-
|
82 |
-
if "tps" not in st.session_state:
|
83 |
-
st.session_state.tps = 0
|
84 |
-
|
85 |
if "temp" not in st.session_state:
|
86 |
st.session_state.temp = 0.8
|
87 |
|
@@ -102,61 +47,30 @@ def init_state() :
|
|
102 |
|
103 |
def sidebar() :
|
104 |
def retrieval_settings() :
|
105 |
-
st.markdown("#
|
106 |
-
st.session_state.rag_enabled = st.toggle("
|
107 |
-
st.session_state.top_k = st.slider(label="
|
108 |
min_value=1, max_value=20, value=4, disabled=not st.session_state.rag_enabled)
|
109 |
st.markdown("---")
|
110 |
|
111 |
-
def model_analytics() :
|
112 |
-
st.markdown("# Model Analytics")
|
113 |
-
|
114 |
-
st.write("Total tokens used :", st.session_state['tokens_used'])
|
115 |
-
st.write("Speed :", st.session_state['tps'], " tokens/sec")
|
116 |
-
st.write("Total cost incurred :", round(
|
117 |
-
COST_PER_1000_TOKENS_INR * st.session_state['tokens_used'] / 1000, 3), "INR")
|
118 |
-
|
119 |
-
st.markdown("---")
|
120 |
-
|
121 |
def model_settings() :
|
122 |
-
st.markdown("#
|
123 |
-
|
124 |
-
st.session_state.
|
125 |
-
|
126 |
-
st.session_state.
|
127 |
-
label="Temperature", min_value=0.0, max_value=1.0, step=0.1, value=0.9)
|
128 |
-
|
129 |
-
st.session_state.max_tokens = st.slider(
|
130 |
-
label="New tokens to generate", min_value = 64, max_value=2048, step= 32, value=512
|
131 |
-
)
|
132 |
-
|
133 |
-
st.session_state.repetion_penalty = st.slider(
|
134 |
-
label="Repetion Penalty", min_value=0., max_value=1., step=0.1, value=1.
|
135 |
-
)
|
136 |
|
137 |
with st.sidebar:
|
138 |
retrieval_settings()
|
139 |
-
model_analytics()
|
140 |
model_settings()
|
141 |
-
|
142 |
-
st.markdown("""
|
143 |
-
> **Created by [Pragnesh Barik](https://barik.super.site) 🔗**
|
144 |
-
""")
|
145 |
|
146 |
def header() :
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
st.image("ikigai.svg")
|
153 |
-
st.title("Ikigai Chat")
|
154 |
-
with st.expander("What is Ikigai Chat ?"):
|
155 |
-
st.info("""Ikigai Chat is a vector database powered chat agent, it works on the principle of
|
156 |
-
of Retrieval Augmented Generation (RAG), Its primary function revolves around maintaining an extensive repository of Ikigai Docs and providing users with answers that align with their queries.
|
157 |
-
This approach ensures a more refined and tailored response to user inquiries.""")
|
158 |
-
|
159 |
-
st.table(df)
|
160 |
|
161 |
def chat_box() :
|
162 |
for message in st.session_state.messages:
|
@@ -170,21 +84,18 @@ def feedback_buttons() :
|
|
170 |
if is_visible :
|
171 |
col1, col2 = st.columns(2)
|
172 |
with col1 :
|
173 |
-
st.button("👍
|
174 |
-
|
175 |
with col2 :
|
176 |
-
st.button("👎
|
177 |
|
178 |
def generate_chat_stream(prompt) :
|
179 |
links = []
|
180 |
if st.session_state.rag_enabled :
|
181 |
-
with st.spinner("
|
182 |
-
prompt, links = gen_augmented_prompt(prompt=prompt, top_k=st.session_state.top_k)
|
183 |
-
|
184 |
-
with st.spinner("Generating response...") :
|
185 |
chat_stream = chat(prompt, st.session_state.history,chat_client=CHAT_BOTS[st.session_state.chat_bot] ,
|
186 |
-
temperature=st.session_state.temp, max_new_tokens=st.session_state.max_tokens)
|
187 |
-
|
188 |
return chat_stream, links
|
189 |
|
190 |
def stream_handler(chat_stream, placeholder) :
|
@@ -205,21 +116,15 @@ def stream_handler(chat_stream, placeholder) :
|
|
205 |
col1, col2, col3 = st.columns(3)
|
206 |
|
207 |
with col1 :
|
208 |
-
st.write(f"**{tokens_per_second}
|
209 |
|
210 |
with col2 :
|
211 |
-
st.write(f"**{int(len_response)} tokens
|
212 |
-
|
213 |
-
with col3 :
|
214 |
-
st.write(f"**₹ {round(len_response * COST_PER_1000_TOKENS_INR / 1000, 5)} cost incurred**" )
|
215 |
|
216 |
-
st.session_state['tps'] = tokens_per_second
|
217 |
-
st.session_state["tokens_used"] = len_response + st.session_state["tokens_used"]
|
218 |
-
|
219 |
return full_response
|
220 |
|
221 |
def show_source(links) :
|
222 |
-
with st.expander("
|
223 |
for i, link in enumerate(links) :
|
224 |
st.info(f"{link}")
|
225 |
|
@@ -228,7 +133,7 @@ sidebar()
|
|
228 |
header()
|
229 |
chat_box()
|
230 |
|
231 |
-
if prompt := st.chat_input("
|
232 |
st.chat_message("user").markdown(prompt)
|
233 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
234 |
|
@@ -242,4 +147,4 @@ if prompt := st.chat_input("Chat with Ikigai Docs..."):
|
|
242 |
show_source(links)
|
243 |
|
244 |
st.session_state.history.append([prompt, full_response])
|
245 |
-
st.session_state.messages.append({"role": "assistant", "content": full_response})
|
|
|
1 |
import streamlit as st
|
2 |
from chat_client import chat
|
3 |
import time
|
|
|
|
|
4 |
import os
|
5 |
from dotenv import load_dotenv
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
load_dotenv()
|
8 |
|
9 |
+
CHAT_BOTS = {"Mixtral 8x7B v0.1" :"mistralai/Mixtral-8x7B-Instruct-v0.1"}
|
10 |
+
SYSTEM_PROMPT = ["Sei BonsiAI e mi aiuterai nelle mie richieste (Parla in ITALIANO)", "Esatto, sono BonsiAI. Di cosa hai bisogno?"]
|
11 |
+
IDENTITY_CHANGE = ["Sei BonsiAI da ora in poi!", "Certo farò del mio meglio"]
|
12 |
|
13 |
+
st.set_page_config(page_title="BonsiAI", page_icon="🤖")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
def gen_augmented_prompt(prompt, top_k) :
|
16 |
+
context = ""
|
17 |
+
links = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
generated_prompt = f"""
|
19 |
+
A PARTIRE DAL SEGUENTE CONTESTO: {context},
|
20 |
|
21 |
----
|
22 |
+
RISPONDI ALLA SEGUENTE RICHIESTA: {prompt}
|
23 |
"""
|
24 |
return generated_prompt, links
|
25 |
|
|
|
27 |
if "messages" not in st.session_state:
|
28 |
st.session_state.messages = []
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
if "temp" not in st.session_state:
|
31 |
st.session_state.temp = 0.8
|
32 |
|
|
|
47 |
|
48 |
def sidebar() :
|
49 |
def retrieval_settings() :
|
50 |
+
st.markdown("# Impostazioni Documenti")
|
51 |
+
st.session_state.rag_enabled = st.toggle("Cerca nel DB Vettoriale", value=True)
|
52 |
+
st.session_state.top_k = st.slider(label="Documenti da ricercare",
|
53 |
min_value=1, max_value=20, value=4, disabled=not st.session_state.rag_enabled)
|
54 |
st.markdown("---")
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
def model_settings() :
|
57 |
+
st.markdown("# Impostazioni Modello")
|
58 |
+
st.session_state.chat_bot = st.sidebar.radio('Seleziona Modello:', [key for key, value in CHAT_BOTS.items() ])
|
59 |
+
st.session_state.temp = st.slider(label="Creatività", min_value=0.0, max_value=1.0, step=0.1, value=0.9)
|
60 |
+
st.session_state.max_tokens = st.slider(label="Lunghezza Output", min_value = 64, max_value=2048, step= 32, value=512)
|
61 |
+
st.session_state.repetion_penalty = st.slider(label="Penalità Ripetizione", min_value=0., max_value=1., step=0.1, value=1. )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
with st.sidebar:
|
64 |
retrieval_settings()
|
|
|
65 |
model_settings()
|
66 |
+
st.markdown("""> **Creato da [Matteo Script] 🔗**""")
|
|
|
|
|
|
|
67 |
|
68 |
def header() :
|
69 |
+
st.title("BonsiAI")
|
70 |
+
with st.expander("Cos'è BonsiAI?"):
|
71 |
+
st.info("""BonsiAI Chat è un ChatBot personalizzato basato su un database vettoriale, funziona secondo il principio della Generazione potenziata da Recupero (RAG).
|
72 |
+
La sua funzione principale ruota attorno alla gestione di un ampio repository di documenti BonsiAI e fornisce agli utenti risposte in linea con le loro domande.
|
73 |
+
Questo approccio garantisce una risposta più precisa sulla base della richiesta degli utenti.""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
def chat_box() :
|
76 |
for message in st.session_state.messages:
|
|
|
84 |
if is_visible :
|
85 |
col1, col2 = st.columns(2)
|
86 |
with col1 :
|
87 |
+
st.button("👍 Soddisfatto", on_click = click_handler,type="primary")
|
|
|
88 |
with col2 :
|
89 |
+
st.button("👎 Deluso", on_click=click_handler, type="secondary")
|
90 |
|
91 |
def generate_chat_stream(prompt) :
|
92 |
links = []
|
93 |
if st.session_state.rag_enabled :
|
94 |
+
with st.spinner("Ricerca nei documenti...."):
|
95 |
+
prompt, links = gen_augmented_prompt(prompt=prompt, top_k=st.session_state.top_k)
|
96 |
+
with st.spinner("Generazione in corso...") :
|
|
|
97 |
chat_stream = chat(prompt, st.session_state.history,chat_client=CHAT_BOTS[st.session_state.chat_bot] ,
|
98 |
+
temperature=st.session_state.temp, max_new_tokens=st.session_state.max_tokens)
|
|
|
99 |
return chat_stream, links
|
100 |
|
101 |
def stream_handler(chat_stream, placeholder) :
|
|
|
116 |
col1, col2, col3 = st.columns(3)
|
117 |
|
118 |
with col1 :
|
119 |
+
st.write(f"**{tokens_per_second} token/secondi**")
|
120 |
|
121 |
with col2 :
|
122 |
+
st.write(f"**{int(len_response)} tokens generati**")
|
|
|
|
|
|
|
123 |
|
|
|
|
|
|
|
124 |
return full_response
|
125 |
|
126 |
def show_source(links) :
|
127 |
+
with st.expander("Mostra fonti") :
|
128 |
for i, link in enumerate(links) :
|
129 |
st.info(f"{link}")
|
130 |
|
|
|
133 |
header()
|
134 |
chat_box()
|
135 |
|
136 |
+
if prompt := st.chat_input("Chatta con BonsiAI..."):
|
137 |
st.chat_message("user").markdown(prompt)
|
138 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
139 |
|
|
|
147 |
show_source(links)
|
148 |
|
149 |
st.session_state.history.append([prompt, full_response])
|
150 |
+
st.session_state.messages.append({"role": "assistant", "content": full_response})
|