pragneshbarik commited on
Commit
2006c2b
·
1 Parent(s): c5bc833

added mistralAI

Browse files
Files changed (8) hide show
  1. __pycache__/mistral7b.cpython-311.pyc +0 -0
  2. app.py +62 -13
  3. chat_log.txt +0 -0
  4. id_log.txt +0 -0
  5. ikigai.svg +13 -0
  6. mistral7b.py +47 -0
  7. requirements.txt +2 -1
  8. utils.py +0 -2
__pycache__/mistral7b.cpython-311.pyc ADDED
Binary file (1.79 kB). View file
 
app.py CHANGED
@@ -1,21 +1,58 @@
1
  import streamlit as st
2
  from utils import generate_text_embeddings
 
 
 
 
3
 
4
- st.title("Echo Bot")
5
 
6
  if "messages" not in st.session_state:
7
  st.session_state.messages = []
8
-
9
 
10
- with st.sidebar :
11
- st.markdown("# Inference Analytics")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  st.markdown("---")
13
- st.markdown("Tokens used :")
14
- st.markdown("Average Querying Time :")
15
- st.markdown("Average Inference Time :")
16
- st.markdown("Cost Incurred :")
 
 
 
 
 
 
17
 
 
 
18
 
 
 
 
 
19
 
20
 
21
  for message in st.session_state.messages:
@@ -23,12 +60,24 @@ for message in st.session_state.messages:
23
  st.markdown(message["content"])
24
 
25
 
26
- if prompt := st.chat_input("What is up?"):
27
- query_embeddings = generate_text_embeddings(prompt)
28
  st.chat_message("user").markdown(prompt)
29
  st.session_state.messages.append({"role": "user", "content": prompt})
 
 
 
 
30
 
31
- response = f"Echo: {prompt}"
32
- with st.chat_message("assistant"):
 
 
 
 
 
 
33
  st.markdown(response)
34
- st.session_state.messages.append({"role": "assistant", "content": response})
 
 
 
 
1
  import streamlit as st
2
  from utils import generate_text_embeddings
3
+ from mistral7b import mistral
4
+
5
+ import time
6
+
7
 
 
8
 
9
  if "messages" not in st.session_state:
10
  st.session_state.messages = []
 
11
 
12
+ if "tokens_used" not in st.session_state :
13
+ st.session_state.tokens_used = 0
14
+
15
+ if "inference_time" not in st.session_state :
16
+ st.session_state.inference_time = [0.00]
17
+
18
+ if "model_settings" not in st.session_state :
19
+ st.session_state.model_settings = {
20
+ "temp" : 0.9,
21
+ "max_tokens" : 512,
22
+ }
23
+
24
+ if "history" not in st.session_state :
25
+ st.session_state.history = []
26
+
27
+ if "top_k" not in st.session_state :
28
+ st.session_state.top_k = 5
29
+
30
+ with st.sidebar:
31
+ st.markdown("# Model Analytics")
32
+ st.write("Tokens used :", st.session_state['tokens_used'])
33
+
34
+ st.write("Average Inference Time: ", round(sum(st.session_state["inference_time"]) / len(st.session_state["inference_time"]), 3))
35
+ st.write("Cost Incured :",round( 0.033 * st.session_state['tokens_used']/ 1000, 3), "INR")
36
+
37
  st.markdown("---")
38
+ st.markdown("# Retrieval Settings")
39
+ st.slider(label="Documents to retrieve", min_value=1, max_value=10, value=3)
40
+ st.markdown("---")
41
+ st.markdown("# Model Settings")
42
+ selected_model = st.sidebar.radio('Select one:', ["Mistral 7B", "GPT 3.5 Turbo", "GPT 4", "Llama 7B"])
43
+ selected_temperature = st.slider(label="Temperature", min_value=0.0, max_value=1.0, step=0.1, value=0.5)
44
+ st.write(" ")
45
+ st.info("**2023 ©️ Pragnesh Barik**")
46
+
47
+
48
 
49
+ st.image("ikigai.svg")
50
+ st.title("Ikigai Chat")
51
 
52
+ with st.expander("What is Ikigai Chat ?"):
53
+ st.info("""Ikigai Chat is a vector database powered chat agent, it works on the principle of
54
+ of Retrieval Augmented Generation (RAG), Its primary function revolves around maintaining an extensive repository of Ikigai Docs and providing users with answers that align with their queries.
55
+ This approach ensures a more refined and tailored response to user inquiries.""")
56
 
57
 
58
  for message in st.session_state.messages:
 
60
  st.markdown(message["content"])
61
 
62
 
63
+ if prompt := st.chat_input("Chat with Ikigai Docs?"):
 
64
  st.chat_message("user").markdown(prompt)
65
  st.session_state.messages.append({"role": "user", "content": prompt})
66
+
67
+ tick = time.time()
68
+ response = mistral(prompt, st.session_state.history, temperature=st.session_state.model_settings["temp"] , max_new_tokens=st.session_state.model_settings["max_tokens"])
69
+ tock = time.time()
70
 
71
+
72
+ st.session_state.inference_time.append(tock - tick)
73
+ response = response.replace("</s>", "")
74
+ len_response = len(response.split())
75
+
76
+ st.session_state["tokens_used"] = len_response + st.session_state["tokens_used"]
77
+
78
+ with st.chat_message("assistant"):
79
  st.markdown(response)
80
+ st.session_state.history.append([prompt, response])
81
+ st.session_state.messages.append({"role": "assistant", "content": response})
82
+
83
+
chat_log.txt ADDED
File without changes
id_log.txt ADDED
File without changes
ikigai.svg ADDED
mistral7b.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from huggingface_hub import InferenceClient
2
+ import os
3
+ from dotenv import load_dotenv
4
+ load_dotenv()
5
+
6
+ API_TOKEN = os.getenv('HF_TOKEN')
7
+ client = InferenceClient(
8
+ "mistralai/Mistral-7B-Instruct-v0.1",
9
+ token=API_TOKEN
10
+ )
11
+
12
+
13
+ def format_prompt(message, history):
14
+ prompt = "<s>"
15
+ for user_prompt, bot_response in history:
16
+ prompt += f"[INST] {user_prompt} [/INST]"
17
+ prompt += f" {bot_response}</s> "
18
+ prompt += f"[INST] {message} [/INST]"
19
+ return prompt
20
+
21
+ def mistral(
22
+ prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
23
+ ):
24
+ temperature = float(temperature)
25
+ if temperature < 1e-2:
26
+ temperature = 1e-2
27
+ top_p = float(top_p)
28
+
29
+ generate_kwargs = dict(
30
+ temperature=temperature,
31
+ max_new_tokens=max_new_tokens,
32
+ top_p=top_p,
33
+ repetition_penalty=repetition_penalty,
34
+ do_sample=True,
35
+ seed=42,
36
+ )
37
+
38
+ formatted_prompt = format_prompt(prompt, history)
39
+
40
+ stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
41
+ output = ""
42
+
43
+ for response in stream:
44
+ # print(response)
45
+ output += response.token["text"]
46
+ # yield output
47
+ return output
requirements.txt CHANGED
@@ -4,6 +4,7 @@ av==10.0.0
4
  bitarray==2.8.1
5
  blinker==1.6.3
6
  cachetools==5.3.1
 
7
  certifi==2023.7.22
8
  charset-normalizer==3.2.0
9
  click==8.1.7
@@ -53,7 +54,7 @@ PyPDF2==3.0.1
53
  pyreadline3==3.4.1
54
  python-dotenv==1.0.0
55
  pytz==2023.3.post1
56
- PyYAML==6.0.1
57
  readme-renderer==42.0
58
  referencing==0.30.2
59
  regex==2023.8.8
 
4
  bitarray==2.8.1
5
  blinker==1.6.3
6
  cachetools==5.3.1
7
+ huggingface-hub==0.16.4
8
  certifi==2023.7.22
9
  charset-normalizer==3.2.0
10
  click==8.1.7
 
54
  pyreadline3==3.4.1
55
  python-dotenv==1.0.0
56
  pytz==2023.3.post1
57
+ PyYAML==6.0.1git
58
  readme-renderer==42.0
59
  referencing==0.30.2
60
  regex==2023.8.8
utils.py CHANGED
@@ -1,5 +1,3 @@
1
- import json
2
- import requests
3
  import os
4
  from dotenv import load_dotenv
5
  from sentence_transformers import SentenceTransformer
 
 
 
1
  import os
2
  from dotenv import load_dotenv
3
  from sentence_transformers import SentenceTransformer