# ruff: noqa: E402 # Above allows ruff to ignore E402: module level import not at top of file import re import tempfile import click import gradio as gr import numpy as np import soundfile as sf import torchaudio from cached_path import cached_path from pydub import AudioSegment from transformers import AutoModelForCausalLM, AutoTokenizer try: import spaces USING_SPACES = True except ImportError: USING_SPACES = False def gpu_decorator(func): if USING_SPACES: return spaces.GPU(func) else: return func from f5_tts.model import DiT, UNetT from f5_tts.infer.utils_infer import ( load_vocoder, load_model, preprocess_ref_audio_text, infer_process, remove_silence_for_generated_wav, save_spectrogram, ) vocos = load_vocoder() # load models F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4) F5TTS_ema_model = load_model( DiT, F5TTS_model_cfg, str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors")) ) E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4) E2TTS_ema_model = load_model( UNetT, E2TTS_model_cfg, str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors")) ) chat_model_state = None chat_tokenizer_state = None def generate_response(messages, model, tokenizer): """Generate response using Qwen""" text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512, temperature=0.7, top_p=0.95, ) generated_ids = [ output_ids[len(input_ids) :] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] return tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] @gpu_decorator def infer(ref_audio_orig, ref_text, gen_text, model, remove_silence, cross_fade_duration=0.15, speed=1): ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=gr.Info) if model == "F5-TTS": ema_model = F5TTS_ema_model elif model == "E2-TTS": ema_model = E2TTS_ema_model final_wave, final_sample_rate, combined_spectrogram = infer_process( ref_audio, ref_text, gen_text, ema_model, cross_fade_duration=cross_fade_duration, speed=speed, show_info=gr.Info, progress=gr.Progress(), ) # Remove silence if remove_silence: with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f: sf.write(f.name, final_wave, final_sample_rate) remove_silence_for_generated_wav(f.name) final_wave, _ = torchaudio.load(f.name) final_wave = final_wave.squeeze().cpu().numpy() # Save the spectrogram with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram: spectrogram_path = tmp_spectrogram.name save_spectrogram(combined_spectrogram, spectrogram_path) return (final_sample_rate, final_wave), spectrogram_path @gpu_decorator def generate_podcast( script, speaker1_name, ref_audio1, ref_text1, speaker2_name, ref_audio2, ref_text2, model, remove_silence ): # Split the script into speaker blocks speaker_pattern = re.compile(f"^({re.escape(speaker1_name)}|{re.escape(speaker2_name)}):", re.MULTILINE) speaker_blocks = speaker_pattern.split(script)[1:] # Skip the first empty element generated_audio_segments = [] for i in range(0, len(speaker_blocks), 2): speaker = speaker_blocks[i] text = speaker_blocks[i + 1].strip() # Determine which speaker is talking if speaker == speaker1_name: ref_audio = ref_audio1 ref_text = ref_text1 elif speaker == speaker2_name: ref_audio = ref_audio2 ref_text = ref_text2 else: continue # Skip if the speaker is neither speaker1 nor speaker2 # Generate audio for this block audio, _ = infer(ref_audio, ref_text, text, model, remove_silence) # Convert the generated audio to a numpy array sr, audio_data = audio # Save the audio data as a WAV file with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file: sf.write(temp_file.name, audio_data, sr) audio_segment = AudioSegment.from_wav(temp_file.name) generated_audio_segments.append(audio_segment) # Add a short pause between speakers pause = AudioSegment.silent(duration=500) # 500ms pause generated_audio_segments.append(pause) # Concatenate all audio segments final_podcast = sum(generated_audio_segments) # Export the final podcast with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file: podcast_path = temp_file.name final_podcast.export(podcast_path, format="wav") return podcast_path with gr.Blocks() as app_credits: gr.Markdown(""" # Credits * [mrfakename](https://github.com/fakerybakery) for the original [online demo](https://huggingface.co/spaces/mrfakename/E2-F5-TTS) * [RootingInLoad](https://github.com/RootingInLoad) for initial chunk generation and podcast app exploration * [jpgallegoar](https://github.com/jpgallegoar) for multiple speech-type generation & voice chat """) with gr.Blocks() as app_tts: gr.Markdown("# Batched TTS") ref_audio_input = gr.Audio(label="Reference Audio", type="filepath") gen_text_input = gr.Textbox(label="Text to Generate", lines=10) model_choice = gr.Radio(choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS") generate_btn = gr.Button("Synthesize", variant="primary") with gr.Accordion("Advanced Settings", open=False): ref_text_input = gr.Textbox( label="Reference Text", info="Leave blank to automatically transcribe the reference audio. If you enter text it will override automatic transcription.", lines=2, ) remove_silence = gr.Checkbox( label="Remove Silences", info="The model tends to produce silences, especially on longer audio. We can manually remove silences if needed. Note that this is an experimental feature and may produce strange results. This will also increase generation time.", value=False, ) speed_slider = gr.Slider( label="Speed", minimum=0.3, maximum=2.0, value=1.0, step=0.1, info="Adjust the speed of the audio.", ) cross_fade_duration_slider = gr.Slider( label="Cross-Fade Duration (s)", minimum=0.0, maximum=1.0, value=0.15, step=0.01, info="Set the duration of the cross-fade between audio clips.", ) audio_output = gr.Audio(label="Synthesized Audio") spectrogram_output = gr.Image(label="Spectrogram") generate_btn.click( infer, inputs=[ ref_audio_input, ref_text_input, gen_text_input, model_choice, remove_silence, cross_fade_duration_slider, speed_slider, ], outputs=[audio_output, spectrogram_output], ) with gr.Blocks() as app_podcast: gr.Markdown("# Podcast Generation") speaker1_name = gr.Textbox(label="Speaker 1 Name") ref_audio_input1 = gr.Audio(label="Reference Audio (Speaker 1)", type="filepath") ref_text_input1 = gr.Textbox(label="Reference Text (Speaker 1)", lines=2) speaker2_name = gr.Textbox(label="Speaker 2 Name") ref_audio_input2 = gr.Audio(label="Reference Audio (Speaker 2)", type="filepath") ref_text_input2 = gr.Textbox(label="Reference Text (Speaker 2)", lines=2) script_input = gr.Textbox( label="Podcast Script", lines=10, placeholder="Enter the script with speaker names at the start of each block, e.g.:\nSean: How did you start studying...\n\nMeghan: I came to my interest in technology...\nIt was a long journey...\n\nSean: That's fascinating. Can you elaborate...", ) podcast_model_choice = gr.Radio(choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS") podcast_remove_silence = gr.Checkbox( label="Remove Silences", value=True, ) generate_podcast_btn = gr.Button("Generate Podcast", variant="primary") podcast_output = gr.Audio(label="Generated Podcast") def podcast_generation( script, speaker1, ref_audio1, ref_text1, speaker2, ref_audio2, ref_text2, model, remove_silence ): return generate_podcast( script, speaker1, ref_audio1, ref_text1, speaker2, ref_audio2, ref_text2, model, remove_silence ) generate_podcast_btn.click( podcast_generation, inputs=[ script_input, speaker1_name, ref_audio_input1, ref_text_input1, speaker2_name, ref_audio_input2, ref_text_input2, podcast_model_choice, podcast_remove_silence, ], outputs=podcast_output, ) def parse_speechtypes_text(gen_text): # Pattern to find {speechtype} pattern = r"\{(.*?)\}" # Split the text by the pattern tokens = re.split(pattern, gen_text) segments = [] current_emotion = "Regular" for i in range(len(tokens)): if i % 2 == 0: # This is text text = tokens[i].strip() if text: segments.append({"emotion": current_emotion, "text": text}) else: # This is emotion emotion = tokens[i].strip() current_emotion = emotion return segments with gr.Blocks() as app_emotional: # New section for emotional generation gr.Markdown( """ # Multiple Speech-Type Generation This section allows you to upload different audio clips for each speech type. 'Regular' emotion is mandatory. You can add additional speech types by clicking the "Add Speech Type" button. Enter your text in the format shown below, and the system will generate speech using the appropriate emotions. If unspecified, the model will use the regular speech type. The current speech type will be used until the next speech type is specified. **Example Input:** {Regular} Hello, I'd like to order a sandwich please. {Surprised} What do you mean you're out of bread? {Sad} I really wanted a sandwich though... {Angry} You know what, darn you and your little shop, you suck! {Whisper} I'll just go back home and cry now. {Shouting} Why me?! """ ) gr.Markdown( "Upload different audio clips for each speech type. 'Regular' emotion is mandatory. You can add additional speech types by clicking the 'Add Speech Type' button." ) # Regular speech type (mandatory) with gr.Row(): regular_name = gr.Textbox(value="Regular", label="Speech Type Name", interactive=False) regular_audio = gr.Audio(label="Regular Reference Audio", type="filepath") regular_ref_text = gr.Textbox(label="Reference Text (Regular)", lines=2) # Additional speech types (up to 99 more) max_speech_types = 100 speech_type_rows = [] speech_type_names = [] speech_type_audios = [] speech_type_ref_texts = [] speech_type_delete_btns = [] for i in range(max_speech_types - 1): with gr.Row(visible=False) as row: name_input = gr.Textbox(label="Speech Type Name") audio_input = gr.Audio(label="Reference Audio", type="filepath") ref_text_input = gr.Textbox(label="Reference Text", lines=2) delete_btn = gr.Button("Delete", variant="secondary") speech_type_rows.append(row) speech_type_names.append(name_input) speech_type_audios.append(audio_input) speech_type_ref_texts.append(ref_text_input) speech_type_delete_btns.append(delete_btn) # Button to add speech type add_speech_type_btn = gr.Button("Add Speech Type") # Keep track of current number of speech types speech_type_count = gr.State(value=0) # Function to add a speech type def add_speech_type_fn(speech_type_count): if speech_type_count < max_speech_types - 1: speech_type_count += 1 # Prepare updates for the rows row_updates = [] for i in range(max_speech_types - 1): if i < speech_type_count: row_updates.append(gr.update(visible=True)) else: row_updates.append(gr.update()) else: # Optionally, show a warning row_updates = [gr.update() for _ in range(max_speech_types - 1)] return [speech_type_count] + row_updates add_speech_type_btn.click( add_speech_type_fn, inputs=speech_type_count, outputs=[speech_type_count] + speech_type_rows ) # Function to delete a speech type def make_delete_speech_type_fn(index): def delete_speech_type_fn(speech_type_count): # Prepare updates row_updates = [] for i in range(max_speech_types - 1): if i == index: row_updates.append(gr.update(visible=False)) else: row_updates.append(gr.update()) speech_type_count = max(0, speech_type_count - 1) return [speech_type_count] + row_updates return delete_speech_type_fn # Update delete button clicks for i, delete_btn in enumerate(speech_type_delete_btns): delete_fn = make_delete_speech_type_fn(i) delete_btn.click(delete_fn, inputs=speech_type_count, outputs=[speech_type_count] + speech_type_rows) # Text input for the prompt gen_text_input_emotional = gr.Textbox(label="Text to Generate", lines=10) # Model choice model_choice_emotional = gr.Radio(choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS") with gr.Accordion("Advanced Settings", open=False): remove_silence_emotional = gr.Checkbox( label="Remove Silences", value=False, ) # Generate button generate_emotional_btn = gr.Button("Generate Emotional Speech", variant="primary") # Output audio audio_output_emotional = gr.Audio(label="Synthesized Audio") @gpu_decorator def generate_emotional_speech( regular_audio, regular_ref_text, gen_text, *args, ): num_additional_speech_types = max_speech_types - 1 speech_type_names_list = args[:num_additional_speech_types] speech_type_audios_list = args[num_additional_speech_types : 2 * num_additional_speech_types] speech_type_ref_texts_list = args[2 * num_additional_speech_types : 3 * num_additional_speech_types] model_choice = args[3 * num_additional_speech_types] remove_silence = args[3 * num_additional_speech_types + 1] # Collect the speech types and their audios into a dict speech_types = {"Regular": {"audio": regular_audio, "ref_text": regular_ref_text}} for name_input, audio_input, ref_text_input in zip( speech_type_names_list, speech_type_audios_list, speech_type_ref_texts_list ): if name_input and audio_input: speech_types[name_input] = {"audio": audio_input, "ref_text": ref_text_input} # Parse the gen_text into segments segments = parse_speechtypes_text(gen_text) # For each segment, generate speech generated_audio_segments = [] current_emotion = "Regular" for segment in segments: emotion = segment["emotion"] text = segment["text"] if emotion in speech_types: current_emotion = emotion else: # If emotion not available, default to Regular current_emotion = "Regular" ref_audio = speech_types[current_emotion]["audio"] ref_text = speech_types[current_emotion].get("ref_text", "") # Generate speech for this segment audio, _ = infer(ref_audio, ref_text, text, model_choice, remove_silence, 0) sr, audio_data = audio generated_audio_segments.append(audio_data) # Concatenate all audio segments if generated_audio_segments: final_audio_data = np.concatenate(generated_audio_segments) return (sr, final_audio_data) else: gr.Warning("No audio generated.") return None generate_emotional_btn.click( generate_emotional_speech, inputs=[ regular_audio, regular_ref_text, gen_text_input_emotional, ] + speech_type_names + speech_type_audios + speech_type_ref_texts + [ model_choice_emotional, remove_silence_emotional, ], outputs=audio_output_emotional, ) # Validation function to disable Generate button if speech types are missing def validate_speech_types(gen_text, regular_name, *args): num_additional_speech_types = max_speech_types - 1 speech_type_names_list = args[:num_additional_speech_types] # Collect the speech types names speech_types_available = set() if regular_name: speech_types_available.add(regular_name) for name_input in speech_type_names_list: if name_input: speech_types_available.add(name_input) # Parse the gen_text to get the speech types used segments = parse_speechtypes_text(gen_text) speech_types_in_text = set(segment["emotion"] for segment in segments) # Check if all speech types in text are available missing_speech_types = speech_types_in_text - speech_types_available if missing_speech_types: # Disable the generate button return gr.update(interactive=False) else: # Enable the generate button return gr.update(interactive=True) gen_text_input_emotional.change( validate_speech_types, inputs=[gen_text_input_emotional, regular_name] + speech_type_names, outputs=generate_emotional_btn, ) with gr.Blocks() as app_chat: gr.Markdown( """ # Voice Chat Have a conversation with an AI using your reference voice! 1. Upload a reference audio clip and optionally its transcript. 2. Load the chat model. 3. Record your message through your microphone. 4. The AI will respond using the reference voice. """ ) load_chat_model_btn = gr.Button("Load Chat Model", variant="primary") chat_interface_container = gr.Column(visible=False) def load_chat_model(): global chat_model_state, chat_tokenizer_state if chat_model_state is None: show_info = gr.Info show_info("Loading chat model...") model_name = "Qwen/Qwen2.5-3B-Instruct" chat_model_state = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto") chat_tokenizer_state = AutoTokenizer.from_pretrained(model_name) show_info("Chat model loaded.") return gr.update(visible=False), gr.update(visible=True) load_chat_model_btn.click(load_chat_model, outputs=[load_chat_model_btn, chat_interface_container]) with chat_interface_container: with gr.Row(): with gr.Column(): ref_audio_chat = gr.Audio(label="Reference Audio", type="filepath") with gr.Column(): with gr.Accordion("Advanced Settings", open=False): model_choice_chat = gr.Radio( choices=["F5-TTS", "E2-TTS"], label="TTS Model", value="F5-TTS", ) remove_silence_chat = gr.Checkbox( label="Remove Silences", value=True, ) ref_text_chat = gr.Textbox( label="Reference Text", info="Optional: Leave blank to auto-transcribe", lines=2, ) system_prompt_chat = gr.Textbox( label="System Prompt", value="You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud.", lines=2, ) chatbot_interface = gr.Chatbot(label="Conversation") with gr.Row(): with gr.Column(): audio_output_chat = gr.Audio(autoplay=True) with gr.Column(): audio_input_chat = gr.Microphone( label="Speak your message", type="filepath", ) clear_btn_chat = gr.Button("Clear Conversation") conversation_state = gr.State( value=[ { "role": "system", "content": "You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud.", } ] ) # Modify process_audio_input to use model and tokenizer from state def process_audio_input(audio_path, history, conv_state): """Handle audio input from user""" if not audio_path: return history, conv_state, "" text = "" text = preprocess_ref_audio_text(audio_path, text)[1] if not text.strip(): return history, conv_state, "" conv_state.append({"role": "user", "content": text}) history.append((text, None)) response = generate_response(conv_state, chat_model_state, chat_tokenizer_state) conv_state.append({"role": "assistant", "content": response}) history[-1] = (text, response) return history, conv_state, "" def generate_audio_response(history, ref_audio, ref_text, model, remove_silence): """Generate TTS audio for AI response""" if not history or not ref_audio: return None last_user_message, last_ai_response = history[-1] if not last_ai_response: return None audio_result, _ = infer( ref_audio, ref_text, last_ai_response, model, remove_silence, cross_fade_duration=0.15, speed=1.0, ) return audio_result def clear_conversation(): """Reset the conversation""" return [], [ { "role": "system", "content": "You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud.", } ] def update_system_prompt(new_prompt): """Update the system prompt and reset the conversation""" new_conv_state = [{"role": "system", "content": new_prompt}] return [], new_conv_state # Handle audio input audio_input_chat.stop_recording( process_audio_input, inputs=[audio_input_chat, chatbot_interface, conversation_state], outputs=[chatbot_interface, conversation_state], ).then( generate_audio_response, inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, model_choice_chat, remove_silence_chat], outputs=audio_output_chat, ) # Handle clear button clear_btn_chat.click( clear_conversation, outputs=[chatbot_interface, conversation_state], ) # Handle system prompt change and reset conversation system_prompt_chat.change( update_system_prompt, inputs=system_prompt_chat, outputs=[chatbot_interface, conversation_state], ) with gr.Blocks() as app: gr.Markdown( """ # E2/F5 TTS This is a local web UI for F5 TTS with advanced batch processing support. This app supports the following TTS models: * [F5-TTS](https://arxiv.org/abs/2410.06885) (A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching) * [E2 TTS](https://arxiv.org/abs/2406.18009) (Embarrassingly Easy Fully Non-Autoregressive Zero-Shot TTS) The checkpoints support English and Chinese. If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt. **NOTE: Reference text will be automatically transcribed with Whisper if not provided. For best results, keep your reference clips short (<15s). Ensure the audio is fully uploaded before generating.** """ ) gr.TabbedInterface( [app_tts, app_podcast, app_emotional, app_chat, app_credits], ["TTS", "Podcast", "Multi-Style", "Voice-Chat", "Credits"], ) @click.command() @click.option("--port", "-p", default=None, type=int, help="Port to run the app on") @click.option("--host", "-H", default=None, help="Host to run the app on") @click.option( "--share", "-s", default=False, is_flag=True, help="Share the app via Gradio share link", ) @click.option("--api", "-a", default=True, is_flag=True, help="Allow API access") def main(port, host, share, api): global app print("Starting app...") app.queue(api_open=api).launch(server_name=host, server_port=port, share=share, show_api=api) if __name__ == "__main__": if not USING_SPACES: main() else: app.queue().launch()