Spaces:
Running
on
Zero
Running
on
Zero
Fabrice-TIERCELIN
commited on
Upload 3 files
Browse files- sgm/__init__.py +4 -0
- sgm/lr_scheduler.py +135 -0
- sgm/util.py +248 -0
sgm/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .models import AutoencodingEngine, DiffusionEngine
|
2 |
+
from .util import get_configs_path, instantiate_from_config
|
3 |
+
|
4 |
+
__version__ = "0.1.0"
|
sgm/lr_scheduler.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
|
4 |
+
class LambdaWarmUpCosineScheduler:
|
5 |
+
"""
|
6 |
+
note: use with a base_lr of 1.0
|
7 |
+
"""
|
8 |
+
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
warm_up_steps,
|
12 |
+
lr_min,
|
13 |
+
lr_max,
|
14 |
+
lr_start,
|
15 |
+
max_decay_steps,
|
16 |
+
verbosity_interval=0,
|
17 |
+
):
|
18 |
+
self.lr_warm_up_steps = warm_up_steps
|
19 |
+
self.lr_start = lr_start
|
20 |
+
self.lr_min = lr_min
|
21 |
+
self.lr_max = lr_max
|
22 |
+
self.lr_max_decay_steps = max_decay_steps
|
23 |
+
self.last_lr = 0.0
|
24 |
+
self.verbosity_interval = verbosity_interval
|
25 |
+
|
26 |
+
def schedule(self, n, **kwargs):
|
27 |
+
if self.verbosity_interval > 0:
|
28 |
+
if n % self.verbosity_interval == 0:
|
29 |
+
print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
|
30 |
+
if n < self.lr_warm_up_steps:
|
31 |
+
lr = (
|
32 |
+
self.lr_max - self.lr_start
|
33 |
+
) / self.lr_warm_up_steps * n + self.lr_start
|
34 |
+
self.last_lr = lr
|
35 |
+
return lr
|
36 |
+
else:
|
37 |
+
t = (n - self.lr_warm_up_steps) / (
|
38 |
+
self.lr_max_decay_steps - self.lr_warm_up_steps
|
39 |
+
)
|
40 |
+
t = min(t, 1.0)
|
41 |
+
lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
|
42 |
+
1 + np.cos(t * np.pi)
|
43 |
+
)
|
44 |
+
self.last_lr = lr
|
45 |
+
return lr
|
46 |
+
|
47 |
+
def __call__(self, n, **kwargs):
|
48 |
+
return self.schedule(n, **kwargs)
|
49 |
+
|
50 |
+
|
51 |
+
class LambdaWarmUpCosineScheduler2:
|
52 |
+
"""
|
53 |
+
supports repeated iterations, configurable via lists
|
54 |
+
note: use with a base_lr of 1.0.
|
55 |
+
"""
|
56 |
+
|
57 |
+
def __init__(
|
58 |
+
self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0
|
59 |
+
):
|
60 |
+
assert (
|
61 |
+
len(warm_up_steps)
|
62 |
+
== len(f_min)
|
63 |
+
== len(f_max)
|
64 |
+
== len(f_start)
|
65 |
+
== len(cycle_lengths)
|
66 |
+
)
|
67 |
+
self.lr_warm_up_steps = warm_up_steps
|
68 |
+
self.f_start = f_start
|
69 |
+
self.f_min = f_min
|
70 |
+
self.f_max = f_max
|
71 |
+
self.cycle_lengths = cycle_lengths
|
72 |
+
self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
|
73 |
+
self.last_f = 0.0
|
74 |
+
self.verbosity_interval = verbosity_interval
|
75 |
+
|
76 |
+
def find_in_interval(self, n):
|
77 |
+
interval = 0
|
78 |
+
for cl in self.cum_cycles[1:]:
|
79 |
+
if n <= cl:
|
80 |
+
return interval
|
81 |
+
interval += 1
|
82 |
+
|
83 |
+
def schedule(self, n, **kwargs):
|
84 |
+
cycle = self.find_in_interval(n)
|
85 |
+
n = n - self.cum_cycles[cycle]
|
86 |
+
if self.verbosity_interval > 0:
|
87 |
+
if n % self.verbosity_interval == 0:
|
88 |
+
print(
|
89 |
+
f"current step: {n}, recent lr-multiplier: {self.last_f}, "
|
90 |
+
f"current cycle {cycle}"
|
91 |
+
)
|
92 |
+
if n < self.lr_warm_up_steps[cycle]:
|
93 |
+
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[
|
94 |
+
cycle
|
95 |
+
] * n + self.f_start[cycle]
|
96 |
+
self.last_f = f
|
97 |
+
return f
|
98 |
+
else:
|
99 |
+
t = (n - self.lr_warm_up_steps[cycle]) / (
|
100 |
+
self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle]
|
101 |
+
)
|
102 |
+
t = min(t, 1.0)
|
103 |
+
f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
|
104 |
+
1 + np.cos(t * np.pi)
|
105 |
+
)
|
106 |
+
self.last_f = f
|
107 |
+
return f
|
108 |
+
|
109 |
+
def __call__(self, n, **kwargs):
|
110 |
+
return self.schedule(n, **kwargs)
|
111 |
+
|
112 |
+
|
113 |
+
class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
|
114 |
+
def schedule(self, n, **kwargs):
|
115 |
+
cycle = self.find_in_interval(n)
|
116 |
+
n = n - self.cum_cycles[cycle]
|
117 |
+
if self.verbosity_interval > 0:
|
118 |
+
if n % self.verbosity_interval == 0:
|
119 |
+
print(
|
120 |
+
f"current step: {n}, recent lr-multiplier: {self.last_f}, "
|
121 |
+
f"current cycle {cycle}"
|
122 |
+
)
|
123 |
+
|
124 |
+
if n < self.lr_warm_up_steps[cycle]:
|
125 |
+
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[
|
126 |
+
cycle
|
127 |
+
] * n + self.f_start[cycle]
|
128 |
+
self.last_f = f
|
129 |
+
return f
|
130 |
+
else:
|
131 |
+
f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (
|
132 |
+
self.cycle_lengths[cycle] - n
|
133 |
+
) / (self.cycle_lengths[cycle])
|
134 |
+
self.last_f = f
|
135 |
+
return f
|
sgm/util.py
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import importlib
|
3 |
+
import os
|
4 |
+
from functools import partial
|
5 |
+
from inspect import isfunction
|
6 |
+
|
7 |
+
import fsspec
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
from PIL import Image, ImageDraw, ImageFont
|
11 |
+
from safetensors.torch import load_file as load_safetensors
|
12 |
+
|
13 |
+
|
14 |
+
def disabled_train(self, mode=True):
|
15 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
16 |
+
does not change anymore."""
|
17 |
+
return self
|
18 |
+
|
19 |
+
|
20 |
+
def get_string_from_tuple(s):
|
21 |
+
try:
|
22 |
+
# Check if the string starts and ends with parentheses
|
23 |
+
if s[0] == "(" and s[-1] == ")":
|
24 |
+
# Convert the string to a tuple
|
25 |
+
t = eval(s)
|
26 |
+
# Check if the type of t is tuple
|
27 |
+
if type(t) == tuple:
|
28 |
+
return t[0]
|
29 |
+
else:
|
30 |
+
pass
|
31 |
+
except:
|
32 |
+
pass
|
33 |
+
return s
|
34 |
+
|
35 |
+
|
36 |
+
def is_power_of_two(n):
|
37 |
+
"""
|
38 |
+
chat.openai.com/chat
|
39 |
+
Return True if n is a power of 2, otherwise return False.
|
40 |
+
|
41 |
+
The function is_power_of_two takes an integer n as input and returns True if n is a power of 2, otherwise it returns False.
|
42 |
+
The function works by first checking if n is less than or equal to 0. If n is less than or equal to 0, it can't be a power of 2, so the function returns False.
|
43 |
+
If n is greater than 0, the function checks whether n is a power of 2 by using a bitwise AND operation between n and n-1. If n is a power of 2, then it will have only one bit set to 1 in its binary representation. When we subtract 1 from a power of 2, all the bits to the right of that bit become 1, and the bit itself becomes 0. So, when we perform a bitwise AND between n and n-1, we get 0 if n is a power of 2, and a non-zero value otherwise.
|
44 |
+
Thus, if the result of the bitwise AND operation is 0, then n is a power of 2 and the function returns True. Otherwise, the function returns False.
|
45 |
+
|
46 |
+
"""
|
47 |
+
if n <= 0:
|
48 |
+
return False
|
49 |
+
return (n & (n - 1)) == 0
|
50 |
+
|
51 |
+
|
52 |
+
def autocast(f, enabled=True):
|
53 |
+
def do_autocast(*args, **kwargs):
|
54 |
+
with torch.cuda.amp.autocast(
|
55 |
+
enabled=enabled,
|
56 |
+
dtype=torch.get_autocast_gpu_dtype(),
|
57 |
+
cache_enabled=torch.is_autocast_cache_enabled(),
|
58 |
+
):
|
59 |
+
return f(*args, **kwargs)
|
60 |
+
|
61 |
+
return do_autocast
|
62 |
+
|
63 |
+
|
64 |
+
def load_partial_from_config(config):
|
65 |
+
return partial(get_obj_from_str(config["target"]), **config.get("params", dict()))
|
66 |
+
|
67 |
+
|
68 |
+
def log_txt_as_img(wh, xc, size=10):
|
69 |
+
# wh a tuple of (width, height)
|
70 |
+
# xc a list of captions to plot
|
71 |
+
b = len(xc)
|
72 |
+
txts = list()
|
73 |
+
for bi in range(b):
|
74 |
+
txt = Image.new("RGB", wh, color="white")
|
75 |
+
draw = ImageDraw.Draw(txt)
|
76 |
+
font = ImageFont.truetype("data/DejaVuSans.ttf", size=size)
|
77 |
+
nc = int(40 * (wh[0] / 256))
|
78 |
+
if isinstance(xc[bi], list):
|
79 |
+
text_seq = xc[bi][0]
|
80 |
+
else:
|
81 |
+
text_seq = xc[bi]
|
82 |
+
lines = "\n".join(
|
83 |
+
text_seq[start : start + nc] for start in range(0, len(text_seq), nc)
|
84 |
+
)
|
85 |
+
|
86 |
+
try:
|
87 |
+
draw.text((0, 0), lines, fill="black", font=font)
|
88 |
+
except UnicodeEncodeError:
|
89 |
+
print("Cant encode string for logging. Skipping.")
|
90 |
+
|
91 |
+
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
|
92 |
+
txts.append(txt)
|
93 |
+
txts = np.stack(txts)
|
94 |
+
txts = torch.tensor(txts)
|
95 |
+
return txts
|
96 |
+
|
97 |
+
|
98 |
+
def partialclass(cls, *args, **kwargs):
|
99 |
+
class NewCls(cls):
|
100 |
+
__init__ = functools.partialmethod(cls.__init__, *args, **kwargs)
|
101 |
+
|
102 |
+
return NewCls
|
103 |
+
|
104 |
+
|
105 |
+
def make_path_absolute(path):
|
106 |
+
fs, p = fsspec.core.url_to_fs(path)
|
107 |
+
if fs.protocol == "file":
|
108 |
+
return os.path.abspath(p)
|
109 |
+
return path
|
110 |
+
|
111 |
+
|
112 |
+
def ismap(x):
|
113 |
+
if not isinstance(x, torch.Tensor):
|
114 |
+
return False
|
115 |
+
return (len(x.shape) == 4) and (x.shape[1] > 3)
|
116 |
+
|
117 |
+
|
118 |
+
def isimage(x):
|
119 |
+
if not isinstance(x, torch.Tensor):
|
120 |
+
return False
|
121 |
+
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
|
122 |
+
|
123 |
+
|
124 |
+
def isheatmap(x):
|
125 |
+
if not isinstance(x, torch.Tensor):
|
126 |
+
return False
|
127 |
+
|
128 |
+
return x.ndim == 2
|
129 |
+
|
130 |
+
|
131 |
+
def isneighbors(x):
|
132 |
+
if not isinstance(x, torch.Tensor):
|
133 |
+
return False
|
134 |
+
return x.ndim == 5 and (x.shape[2] == 3 or x.shape[2] == 1)
|
135 |
+
|
136 |
+
|
137 |
+
def exists(x):
|
138 |
+
return x is not None
|
139 |
+
|
140 |
+
|
141 |
+
def expand_dims_like(x, y):
|
142 |
+
while x.dim() != y.dim():
|
143 |
+
x = x.unsqueeze(-1)
|
144 |
+
return x
|
145 |
+
|
146 |
+
|
147 |
+
def default(val, d):
|
148 |
+
if exists(val):
|
149 |
+
return val
|
150 |
+
return d() if isfunction(d) else d
|
151 |
+
|
152 |
+
|
153 |
+
def mean_flat(tensor):
|
154 |
+
"""
|
155 |
+
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
|
156 |
+
Take the mean over all non-batch dimensions.
|
157 |
+
"""
|
158 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
159 |
+
|
160 |
+
|
161 |
+
def count_params(model, verbose=False):
|
162 |
+
total_params = sum(p.numel() for p in model.parameters())
|
163 |
+
if verbose:
|
164 |
+
print(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.")
|
165 |
+
return total_params
|
166 |
+
|
167 |
+
|
168 |
+
def instantiate_from_config(config):
|
169 |
+
if not "target" in config:
|
170 |
+
if config == "__is_first_stage__":
|
171 |
+
return None
|
172 |
+
elif config == "__is_unconditional__":
|
173 |
+
return None
|
174 |
+
raise KeyError("Expected key `target` to instantiate.")
|
175 |
+
return get_obj_from_str(config["target"])(**config.get("params", dict()))
|
176 |
+
|
177 |
+
|
178 |
+
def get_obj_from_str(string, reload=False, invalidate_cache=True):
|
179 |
+
module, cls = string.rsplit(".", 1)
|
180 |
+
if invalidate_cache:
|
181 |
+
importlib.invalidate_caches()
|
182 |
+
if reload:
|
183 |
+
module_imp = importlib.import_module(module)
|
184 |
+
importlib.reload(module_imp)
|
185 |
+
return getattr(importlib.import_module(module, package=None), cls)
|
186 |
+
|
187 |
+
|
188 |
+
def append_zero(x):
|
189 |
+
return torch.cat([x, x.new_zeros([1])])
|
190 |
+
|
191 |
+
|
192 |
+
def append_dims(x, target_dims):
|
193 |
+
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
|
194 |
+
dims_to_append = target_dims - x.ndim
|
195 |
+
if dims_to_append < 0:
|
196 |
+
raise ValueError(
|
197 |
+
f"input has {x.ndim} dims but target_dims is {target_dims}, which is less"
|
198 |
+
)
|
199 |
+
return x[(...,) + (None,) * dims_to_append]
|
200 |
+
|
201 |
+
|
202 |
+
def load_model_from_config(config, ckpt, verbose=True, freeze=True):
|
203 |
+
print(f"Loading model from {ckpt}")
|
204 |
+
if ckpt.endswith("ckpt"):
|
205 |
+
pl_sd = torch.load(ckpt, map_location="cpu")
|
206 |
+
if "global_step" in pl_sd:
|
207 |
+
print(f"Global Step: {pl_sd['global_step']}")
|
208 |
+
sd = pl_sd["state_dict"]
|
209 |
+
elif ckpt.endswith("safetensors"):
|
210 |
+
sd = load_safetensors(ckpt)
|
211 |
+
else:
|
212 |
+
raise NotImplementedError
|
213 |
+
|
214 |
+
model = instantiate_from_config(config.model)
|
215 |
+
|
216 |
+
m, u = model.load_state_dict(sd, strict=False)
|
217 |
+
|
218 |
+
if len(m) > 0 and verbose:
|
219 |
+
print("missing keys:")
|
220 |
+
print(m)
|
221 |
+
if len(u) > 0 and verbose:
|
222 |
+
print("unexpected keys:")
|
223 |
+
print(u)
|
224 |
+
|
225 |
+
if freeze:
|
226 |
+
for param in model.parameters():
|
227 |
+
param.requires_grad = False
|
228 |
+
|
229 |
+
model.eval()
|
230 |
+
return model
|
231 |
+
|
232 |
+
|
233 |
+
def get_configs_path() -> str:
|
234 |
+
"""
|
235 |
+
Get the `configs` directory.
|
236 |
+
For a working copy, this is the one in the root of the repository,
|
237 |
+
but for an installed copy, it's in the `sgm` package (see pyproject.toml).
|
238 |
+
"""
|
239 |
+
this_dir = os.path.dirname(__file__)
|
240 |
+
candidates = (
|
241 |
+
os.path.join(this_dir, "configs"),
|
242 |
+
os.path.join(this_dir, "..", "configs"),
|
243 |
+
)
|
244 |
+
for candidate in candidates:
|
245 |
+
candidate = os.path.abspath(candidate)
|
246 |
+
if os.path.isdir(candidate):
|
247 |
+
return candidate
|
248 |
+
raise FileNotFoundError(f"Could not find SGM configs in {candidates}")
|