Spaces:
Running
on
Zero
Running
on
Zero
Fabrice-TIERCELIN
commited on
Upload __init__.py
Browse files
sgm/modules/autoencoding/__init__.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import abstractmethod
|
2 |
+
from typing import Any, Tuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
from ....modules.distributions.distributions import DiagonalGaussianDistribution
|
9 |
+
|
10 |
+
|
11 |
+
class AbstractRegularizer(nn.Module):
|
12 |
+
def __init__(self):
|
13 |
+
super().__init__()
|
14 |
+
|
15 |
+
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]:
|
16 |
+
raise NotImplementedError()
|
17 |
+
|
18 |
+
@abstractmethod
|
19 |
+
def get_trainable_parameters(self) -> Any:
|
20 |
+
raise NotImplementedError()
|
21 |
+
|
22 |
+
|
23 |
+
class DiagonalGaussianRegularizer(AbstractRegularizer):
|
24 |
+
def __init__(self, sample: bool = True):
|
25 |
+
super().__init__()
|
26 |
+
self.sample = sample
|
27 |
+
|
28 |
+
def get_trainable_parameters(self) -> Any:
|
29 |
+
yield from ()
|
30 |
+
|
31 |
+
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]:
|
32 |
+
log = dict()
|
33 |
+
posterior = DiagonalGaussianDistribution(z)
|
34 |
+
if self.sample:
|
35 |
+
z = posterior.sample()
|
36 |
+
else:
|
37 |
+
z = posterior.mode()
|
38 |
+
kl_loss = posterior.kl()
|
39 |
+
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
|
40 |
+
log["kl_loss"] = kl_loss
|
41 |
+
return z, log
|
42 |
+
|
43 |
+
|
44 |
+
def measure_perplexity(predicted_indices, num_centroids):
|
45 |
+
# src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py
|
46 |
+
# eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally
|
47 |
+
encodings = (
|
48 |
+
F.one_hot(predicted_indices, num_centroids).float().reshape(-1, num_centroids)
|
49 |
+
)
|
50 |
+
avg_probs = encodings.mean(0)
|
51 |
+
perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp()
|
52 |
+
cluster_use = torch.sum(avg_probs > 0)
|
53 |
+
return perplexity, cluster_use
|