Fabrice-TIERCELIN commited on
Commit
3f43734
·
verified ·
1 Parent(s): 87c1b97

Upload __init__.py

Browse files
Files changed (1) hide show
  1. sgm/__init__.py +246 -0
sgm/__init__.py ADDED
@@ -0,0 +1,246 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Union
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ from einops import rearrange
6
+
7
+ from ....util import default, instantiate_from_config
8
+ from ..lpips.loss.lpips import LPIPS
9
+ from ..lpips.model.model import NLayerDiscriminator, weights_init
10
+ from ..lpips.vqperceptual import hinge_d_loss, vanilla_d_loss
11
+
12
+
13
+ def adopt_weight(weight, global_step, threshold=0, value=0.0):
14
+ if global_step < threshold:
15
+ weight = value
16
+ return weight
17
+
18
+
19
+ class LatentLPIPS(nn.Module):
20
+ def __init__(
21
+ self,
22
+ decoder_config,
23
+ perceptual_weight=1.0,
24
+ latent_weight=1.0,
25
+ scale_input_to_tgt_size=False,
26
+ scale_tgt_to_input_size=False,
27
+ perceptual_weight_on_inputs=0.0,
28
+ ):
29
+ super().__init__()
30
+ self.scale_input_to_tgt_size = scale_input_to_tgt_size
31
+ self.scale_tgt_to_input_size = scale_tgt_to_input_size
32
+ self.init_decoder(decoder_config)
33
+ self.perceptual_loss = LPIPS().eval()
34
+ self.perceptual_weight = perceptual_weight
35
+ self.latent_weight = latent_weight
36
+ self.perceptual_weight_on_inputs = perceptual_weight_on_inputs
37
+
38
+ def init_decoder(self, config):
39
+ self.decoder = instantiate_from_config(config)
40
+ if hasattr(self.decoder, "encoder"):
41
+ del self.decoder.encoder
42
+
43
+ def forward(self, latent_inputs, latent_predictions, image_inputs, split="train"):
44
+ log = dict()
45
+ loss = (latent_inputs - latent_predictions) ** 2
46
+ log[f"{split}/latent_l2_loss"] = loss.mean().detach()
47
+ image_reconstructions = None
48
+ if self.perceptual_weight > 0.0:
49
+ image_reconstructions = self.decoder.decode(latent_predictions)
50
+ image_targets = self.decoder.decode(latent_inputs)
51
+ perceptual_loss = self.perceptual_loss(
52
+ image_targets.contiguous(), image_reconstructions.contiguous()
53
+ )
54
+ loss = (
55
+ self.latent_weight * loss.mean()
56
+ + self.perceptual_weight * perceptual_loss.mean()
57
+ )
58
+ log[f"{split}/perceptual_loss"] = perceptual_loss.mean().detach()
59
+
60
+ if self.perceptual_weight_on_inputs > 0.0:
61
+ image_reconstructions = default(
62
+ image_reconstructions, self.decoder.decode(latent_predictions)
63
+ )
64
+ if self.scale_input_to_tgt_size:
65
+ image_inputs = torch.nn.functional.interpolate(
66
+ image_inputs,
67
+ image_reconstructions.shape[2:],
68
+ mode="bicubic",
69
+ antialias=True,
70
+ )
71
+ elif self.scale_tgt_to_input_size:
72
+ image_reconstructions = torch.nn.functional.interpolate(
73
+ image_reconstructions,
74
+ image_inputs.shape[2:],
75
+ mode="bicubic",
76
+ antialias=True,
77
+ )
78
+
79
+ perceptual_loss2 = self.perceptual_loss(
80
+ image_inputs.contiguous(), image_reconstructions.contiguous()
81
+ )
82
+ loss = loss + self.perceptual_weight_on_inputs * perceptual_loss2.mean()
83
+ log[f"{split}/perceptual_loss_on_inputs"] = perceptual_loss2.mean().detach()
84
+ return loss, log
85
+
86
+
87
+ class GeneralLPIPSWithDiscriminator(nn.Module):
88
+ def __init__(
89
+ self,
90
+ disc_start: int,
91
+ logvar_init: float = 0.0,
92
+ pixelloss_weight=1.0,
93
+ disc_num_layers: int = 3,
94
+ disc_in_channels: int = 3,
95
+ disc_factor: float = 1.0,
96
+ disc_weight: float = 1.0,
97
+ perceptual_weight: float = 1.0,
98
+ disc_loss: str = "hinge",
99
+ scale_input_to_tgt_size: bool = False,
100
+ dims: int = 2,
101
+ learn_logvar: bool = False,
102
+ regularization_weights: Union[None, dict] = None,
103
+ ):
104
+ super().__init__()
105
+ self.dims = dims
106
+ if self.dims > 2:
107
+ print(
108
+ f"running with dims={dims}. This means that for perceptual loss calculation, "
109
+ f"the LPIPS loss will be applied to each frame independently. "
110
+ )
111
+ self.scale_input_to_tgt_size = scale_input_to_tgt_size
112
+ assert disc_loss in ["hinge", "vanilla"]
113
+ self.pixel_weight = pixelloss_weight
114
+ self.perceptual_loss = LPIPS().eval()
115
+ self.perceptual_weight = perceptual_weight
116
+ # output log variance
117
+ self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init)
118
+ self.learn_logvar = learn_logvar
119
+
120
+ self.discriminator = NLayerDiscriminator(
121
+ input_nc=disc_in_channels, n_layers=disc_num_layers, use_actnorm=False
122
+ ).apply(weights_init)
123
+ self.discriminator_iter_start = disc_start
124
+ self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss
125
+ self.disc_factor = disc_factor
126
+ self.discriminator_weight = disc_weight
127
+ self.regularization_weights = default(regularization_weights, {})
128
+
129
+ def get_trainable_parameters(self) -> Any:
130
+ return self.discriminator.parameters()
131
+
132
+ def get_trainable_autoencoder_parameters(self) -> Any:
133
+ if self.learn_logvar:
134
+ yield self.logvar
135
+ yield from ()
136
+
137
+ def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
138
+ if last_layer is not None:
139
+ nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
140
+ g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
141
+ else:
142
+ nll_grads = torch.autograd.grad(
143
+ nll_loss, self.last_layer[0], retain_graph=True
144
+ )[0]
145
+ g_grads = torch.autograd.grad(
146
+ g_loss, self.last_layer[0], retain_graph=True
147
+ )[0]
148
+
149
+ d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
150
+ d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
151
+ d_weight = d_weight * self.discriminator_weight
152
+ return d_weight
153
+
154
+ def forward(
155
+ self,
156
+ regularization_log,
157
+ inputs,
158
+ reconstructions,
159
+ optimizer_idx,
160
+ global_step,
161
+ last_layer=None,
162
+ split="train",
163
+ weights=None,
164
+ ):
165
+ if self.scale_input_to_tgt_size:
166
+ inputs = torch.nn.functional.interpolate(
167
+ inputs, reconstructions.shape[2:], mode="bicubic", antialias=True
168
+ )
169
+
170
+ if self.dims > 2:
171
+ inputs, reconstructions = map(
172
+ lambda x: rearrange(x, "b c t h w -> (b t) c h w"),
173
+ (inputs, reconstructions),
174
+ )
175
+
176
+ rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
177
+ if self.perceptual_weight > 0:
178
+ p_loss = self.perceptual_loss(
179
+ inputs.contiguous(), reconstructions.contiguous()
180
+ )
181
+ rec_loss = rec_loss + self.perceptual_weight * p_loss
182
+
183
+ nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar
184
+ weighted_nll_loss = nll_loss
185
+ if weights is not None:
186
+ weighted_nll_loss = weights * nll_loss
187
+ weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0]
188
+ nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
189
+
190
+ # now the GAN part
191
+ if optimizer_idx == 0:
192
+ # generator update
193
+ logits_fake = self.discriminator(reconstructions.contiguous())
194
+ g_loss = -torch.mean(logits_fake)
195
+
196
+ if self.disc_factor > 0.0:
197
+ try:
198
+ d_weight = self.calculate_adaptive_weight(
199
+ nll_loss, g_loss, last_layer=last_layer
200
+ )
201
+ except RuntimeError:
202
+ assert not self.training
203
+ d_weight = torch.tensor(0.0)
204
+ else:
205
+ d_weight = torch.tensor(0.0)
206
+
207
+ disc_factor = adopt_weight(
208
+ self.disc_factor, global_step, threshold=self.discriminator_iter_start
209
+ )
210
+ loss = weighted_nll_loss + d_weight * disc_factor * g_loss
211
+ log = dict()
212
+ for k in regularization_log:
213
+ if k in self.regularization_weights:
214
+ loss = loss + self.regularization_weights[k] * regularization_log[k]
215
+ log[f"{split}/{k}"] = regularization_log[k].detach().mean()
216
+
217
+ log.update(
218
+ {
219
+ "{}/total_loss".format(split): loss.clone().detach().mean(),
220
+ "{}/logvar".format(split): self.logvar.detach(),
221
+ "{}/nll_loss".format(split): nll_loss.detach().mean(),
222
+ "{}/rec_loss".format(split): rec_loss.detach().mean(),
223
+ "{}/d_weight".format(split): d_weight.detach(),
224
+ "{}/disc_factor".format(split): torch.tensor(disc_factor),
225
+ "{}/g_loss".format(split): g_loss.detach().mean(),
226
+ }
227
+ )
228
+
229
+ return loss, log
230
+
231
+ if optimizer_idx == 1:
232
+ # second pass for discriminator update
233
+ logits_real = self.discriminator(inputs.contiguous().detach())
234
+ logits_fake = self.discriminator(reconstructions.contiguous().detach())
235
+
236
+ disc_factor = adopt_weight(
237
+ self.disc_factor, global_step, threshold=self.discriminator_iter_start
238
+ )
239
+ d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
240
+
241
+ log = {
242
+ "{}/disc_loss".format(split): d_loss.clone().detach().mean(),
243
+ "{}/logits_real".format(split): logits_real.detach().mean(),
244
+ "{}/logits_fake".format(split): logits_fake.detach().mean(),
245
+ }
246
+ return d_loss, log