Mar2Ding commited on
Commit
b578f14
·
verified ·
1 Parent(s): a13369a

Upload 61 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +3 -0
  2. assets/model_diagram.png +0 -0
  3. assets/sa_v_dataset.jpg +0 -0
  4. build/lib.linux-x86_64-cpython-310/sam2/_C.so +3 -0
  5. build/temp.linux-x86_64-cpython-310/build.ninja +32 -0
  6. build/temp.linux-x86_64-cpython-310/sam2/csrc/connected_components.o +3 -0
  7. checkpoints/sam2.1_hiera_base_plus.pt +3 -0
  8. checkpoints/sam2.1_hiera_small.pt +3 -0
  9. checkpoints/sam2.1_hiera_tiny.pt +3 -0
  10. sam2/_C.so +3 -0
  11. sam2/__init__.py +11 -0
  12. sam2/__pycache__/__init__.cpython-310.pyc +0 -0
  13. sam2/__pycache__/build_sam.cpython-310.pyc +0 -0
  14. sam2/__pycache__/sam2_image_predictor.cpython-310.pyc +0 -0
  15. sam2/__pycache__/sam2_video_predictor.cpython-310.pyc +0 -0
  16. sam2/automatic_mask_generator.py +454 -0
  17. sam2/build_sam.py +167 -0
  18. sam2/configs/sam2.1/sam2.1_hiera_b+.yaml +116 -0
  19. sam2/configs/sam2.1/sam2.1_hiera_l.yaml +120 -0
  20. sam2/configs/sam2.1/sam2.1_hiera_s.yaml +119 -0
  21. sam2/configs/sam2.1/sam2.1_hiera_t.yaml +121 -0
  22. sam2/configs/sam2.1_training/sam2.1_hiera_b+_MOSE_finetune.yaml +339 -0
  23. sam2/csrc/connected_components.cu +289 -0
  24. sam2/modeling/__init__.py +5 -0
  25. sam2/modeling/__pycache__/__init__.cpython-310.pyc +0 -0
  26. sam2/modeling/__pycache__/memory_attention.cpython-310.pyc +0 -0
  27. sam2/modeling/__pycache__/memory_encoder.cpython-310.pyc +0 -0
  28. sam2/modeling/__pycache__/position_encoding.cpython-310.pyc +0 -0
  29. sam2/modeling/__pycache__/sam2_base.cpython-310.pyc +0 -0
  30. sam2/modeling/__pycache__/sam2_utils.cpython-310.pyc +0 -0
  31. sam2/modeling/backbones/__init__.py +5 -0
  32. sam2/modeling/backbones/__pycache__/__init__.cpython-310.pyc +0 -0
  33. sam2/modeling/backbones/__pycache__/hieradet.cpython-310.pyc +0 -0
  34. sam2/modeling/backbones/__pycache__/image_encoder.cpython-310.pyc +0 -0
  35. sam2/modeling/backbones/__pycache__/utils.cpython-310.pyc +0 -0
  36. sam2/modeling/backbones/hieradet.py +317 -0
  37. sam2/modeling/backbones/image_encoder.py +134 -0
  38. sam2/modeling/backbones/utils.py +95 -0
  39. sam2/modeling/memory_attention.py +205 -0
  40. sam2/modeling/memory_encoder.py +181 -0
  41. sam2/modeling/position_encoding.py +221 -0
  42. sam2/modeling/sam/__init__.py +5 -0
  43. sam2/modeling/sam/__pycache__/__init__.cpython-310.pyc +0 -0
  44. sam2/modeling/sam/__pycache__/mask_decoder.cpython-310.pyc +0 -0
  45. sam2/modeling/sam/__pycache__/prompt_encoder.cpython-310.pyc +0 -0
  46. sam2/modeling/sam/__pycache__/transformer.cpython-310.pyc +0 -0
  47. sam2/modeling/sam/mask_decoder.py +300 -0
  48. sam2/modeling/sam/prompt_encoder.py +182 -0
  49. sam2/modeling/sam/transformer.py +360 -0
  50. sam2/modeling/sam2_base.py +943 -0
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ build/lib.linux-x86_64-cpython-310/sam2/_C.so filter=lfs diff=lfs merge=lfs -text
37
+ build/temp.linux-x86_64-cpython-310/sam2/csrc/connected_components.o filter=lfs diff=lfs merge=lfs -text
38
+ sam2/_C.so filter=lfs diff=lfs merge=lfs -text
assets/model_diagram.png ADDED
assets/sa_v_dataset.jpg ADDED
build/lib.linux-x86_64-cpython-310/sam2/_C.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67c0d5588c99e7a7d44c2325a98877c585934c8a1e8cd35be793a6ee266f235a
3
+ size 1873536
build/temp.linux-x86_64-cpython-310/build.ninja ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ninja_required_version = 1.3
2
+ cxx = /mnt/petrelfs/share/gcc/gcc-10.2.0/bin/c++
3
+ nvcc = /mnt/petrelfs/share/cuda-11.8/bin/nvcc
4
+
5
+ cflags = -Wno-unused-result -Wsign-compare -DNDEBUG -fwrapv -O2 -Wall -fPIC -O2 -isystem /mnt/cache/dingshuangrui/anaconda3/envs/sam/include -fPIC -O2 -isystem /mnt/cache/dingshuangrui/anaconda3/envs/sam/include -fPIC -I/mnt/cache/dingshuangrui/anaconda3/envs/sam/lib/python3.10/site-packages/torch/include -I/mnt/cache/dingshuangrui/anaconda3/envs/sam/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/mnt/cache/dingshuangrui/anaconda3/envs/sam/lib/python3.10/site-packages/torch/include/TH -I/mnt/cache/dingshuangrui/anaconda3/envs/sam/lib/python3.10/site-packages/torch/include/THC -I/mnt/petrelfs/share/cuda-11.8/include -I/mnt/cache/dingshuangrui/anaconda3/envs/sam/include/python3.10 -c
6
+ post_cflags = -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=_C -D_GLIBCXX_USE_CXX11_ABI=0 -std=c++17
7
+ cuda_cflags = -I/mnt/cache/dingshuangrui/anaconda3/envs/sam/lib/python3.10/site-packages/torch/include -I/mnt/cache/dingshuangrui/anaconda3/envs/sam/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/mnt/cache/dingshuangrui/anaconda3/envs/sam/lib/python3.10/site-packages/torch/include/TH -I/mnt/cache/dingshuangrui/anaconda3/envs/sam/lib/python3.10/site-packages/torch/include/THC -I/mnt/petrelfs/share/cuda-11.8/include -I/mnt/cache/dingshuangrui/anaconda3/envs/sam/include/python3.10 -c
8
+ cuda_post_cflags = -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ --expt-relaxed-constexpr --compiler-options ''"'"'-fPIC'"'"'' -DCUDA_HAS_FP16=1 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ -DTORCH_API_INCLUDE_EXTENSION_H '-DPYBIND11_COMPILER_TYPE="_gcc"' '-DPYBIND11_STDLIB="_libstdcpp"' '-DPYBIND11_BUILD_ABI="_cxxabi1011"' -DTORCH_EXTENSION_NAME=_C -D_GLIBCXX_USE_CXX11_ABI=0 -gencode=arch=compute_80,code=compute_80 -gencode=arch=compute_80,code=sm_80 -ccbin /mnt/petrelfs/share/gcc/gcc-10.2.0/bin/gcc -std=c++17
9
+ cuda_dlink_post_cflags =
10
+ ldflags =
11
+
12
+ rule compile
13
+ command = $cxx -MMD -MF $out.d $cflags -c $in -o $out $post_cflags
14
+ depfile = $out.d
15
+ deps = gcc
16
+
17
+ rule cuda_compile
18
+ depfile = $out.d
19
+ deps = gcc
20
+ command = $nvcc --generate-dependencies-with-compile --dependency-output $out.d $cuda_cflags -c $in -o $out $cuda_post_cflags
21
+
22
+
23
+
24
+
25
+
26
+ build /mnt/petrelfs/dingshuangrui/SAM2-Video-Predictor/build/temp.linux-x86_64-cpython-310/sam2/csrc/connected_components.o: cuda_compile /mnt/petrelfs/dingshuangrui/SAM2-Video-Predictor/sam2/csrc/connected_components.cu
27
+
28
+
29
+
30
+
31
+
32
+
build/temp.linux-x86_64-cpython-310/sam2/csrc/connected_components.o ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ae64fe80f05eca117159083e8ab58fbdd187d8414578c7a99257fda7a5a123e
3
+ size 2734904
checkpoints/sam2.1_hiera_base_plus.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2345aede8715ab1d5d31b4a509fb160c5a4af1970f199d9054ccfb746c004c5
3
+ size 323606802
checkpoints/sam2.1_hiera_small.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d1aa6f30de5c92224f8172114de081d104bbd23dd9dc5c58996f0cad5dc4d38
3
+ size 184416285
checkpoints/sam2.1_hiera_tiny.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7402e0d864fa82708a20fbd15bc84245c2f26dff0eb43a4b5b93452deb34be69
3
+ size 156008466
sam2/_C.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67c0d5588c99e7a7d44c2325a98877c585934c8a1e8cd35be793a6ee266f235a
3
+ size 1873536
sam2/__init__.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from hydra import initialize_config_module
8
+ from hydra.core.global_hydra import GlobalHydra
9
+
10
+ if not GlobalHydra.instance().is_initialized():
11
+ initialize_config_module("sam2", version_base="1.2")
sam2/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (358 Bytes). View file
 
sam2/__pycache__/build_sam.cpython-310.pyc ADDED
Binary file (3.91 kB). View file
 
sam2/__pycache__/sam2_image_predictor.cpython-310.pyc ADDED
Binary file (15.3 kB). View file
 
sam2/__pycache__/sam2_video_predictor.cpython-310.pyc ADDED
Binary file (26.5 kB). View file
 
sam2/automatic_mask_generator.py ADDED
@@ -0,0 +1,454 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ # Adapted from https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/automatic_mask_generator.py
8
+ from typing import Any, Dict, List, Optional, Tuple
9
+
10
+ import numpy as np
11
+ import torch
12
+ from torchvision.ops.boxes import batched_nms, box_area # type: ignore
13
+
14
+ from sam2.modeling.sam2_base import SAM2Base
15
+ from sam2.sam2_image_predictor import SAM2ImagePredictor
16
+ from sam2.utils.amg import (
17
+ area_from_rle,
18
+ batch_iterator,
19
+ batched_mask_to_box,
20
+ box_xyxy_to_xywh,
21
+ build_all_layer_point_grids,
22
+ calculate_stability_score,
23
+ coco_encode_rle,
24
+ generate_crop_boxes,
25
+ is_box_near_crop_edge,
26
+ mask_to_rle_pytorch,
27
+ MaskData,
28
+ remove_small_regions,
29
+ rle_to_mask,
30
+ uncrop_boxes_xyxy,
31
+ uncrop_masks,
32
+ uncrop_points,
33
+ )
34
+
35
+
36
+ class SAM2AutomaticMaskGenerator:
37
+ def __init__(
38
+ self,
39
+ model: SAM2Base,
40
+ points_per_side: Optional[int] = 32,
41
+ points_per_batch: int = 64,
42
+ pred_iou_thresh: float = 0.8,
43
+ stability_score_thresh: float = 0.95,
44
+ stability_score_offset: float = 1.0,
45
+ mask_threshold: float = 0.0,
46
+ box_nms_thresh: float = 0.7,
47
+ crop_n_layers: int = 0,
48
+ crop_nms_thresh: float = 0.7,
49
+ crop_overlap_ratio: float = 512 / 1500,
50
+ crop_n_points_downscale_factor: int = 1,
51
+ point_grids: Optional[List[np.ndarray]] = None,
52
+ min_mask_region_area: int = 0,
53
+ output_mode: str = "binary_mask",
54
+ use_m2m: bool = False,
55
+ multimask_output: bool = True,
56
+ **kwargs,
57
+ ) -> None:
58
+ """
59
+ Using a SAM 2 model, generates masks for the entire image.
60
+ Generates a grid of point prompts over the image, then filters
61
+ low quality and duplicate masks. The default settings are chosen
62
+ for SAM 2 with a HieraL backbone.
63
+
64
+ Arguments:
65
+ model (Sam): The SAM 2 model to use for mask prediction.
66
+ points_per_side (int or None): The number of points to be sampled
67
+ along one side of the image. The total number of points is
68
+ points_per_side**2. If None, 'point_grids' must provide explicit
69
+ point sampling.
70
+ points_per_batch (int): Sets the number of points run simultaneously
71
+ by the model. Higher numbers may be faster but use more GPU memory.
72
+ pred_iou_thresh (float): A filtering threshold in [0,1], using the
73
+ model's predicted mask quality.
74
+ stability_score_thresh (float): A filtering threshold in [0,1], using
75
+ the stability of the mask under changes to the cutoff used to binarize
76
+ the model's mask predictions.
77
+ stability_score_offset (float): The amount to shift the cutoff when
78
+ calculated the stability score.
79
+ mask_threshold (float): Threshold for binarizing the mask logits
80
+ box_nms_thresh (float): The box IoU cutoff used by non-maximal
81
+ suppression to filter duplicate masks.
82
+ crop_n_layers (int): If >0, mask prediction will be run again on
83
+ crops of the image. Sets the number of layers to run, where each
84
+ layer has 2**i_layer number of image crops.
85
+ crop_nms_thresh (float): The box IoU cutoff used by non-maximal
86
+ suppression to filter duplicate masks between different crops.
87
+ crop_overlap_ratio (float): Sets the degree to which crops overlap.
88
+ In the first crop layer, crops will overlap by this fraction of
89
+ the image length. Later layers with more crops scale down this overlap.
90
+ crop_n_points_downscale_factor (int): The number of points-per-side
91
+ sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
92
+ point_grids (list(np.ndarray) or None): A list over explicit grids
93
+ of points used for sampling, normalized to [0,1]. The nth grid in the
94
+ list is used in the nth crop layer. Exclusive with points_per_side.
95
+ min_mask_region_area (int): If >0, postprocessing will be applied
96
+ to remove disconnected regions and holes in masks with area smaller
97
+ than min_mask_region_area. Requires opencv.
98
+ output_mode (str): The form masks are returned in. Can be 'binary_mask',
99
+ 'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools.
100
+ For large resolutions, 'binary_mask' may consume large amounts of
101
+ memory.
102
+ use_m2m (bool): Whether to add a one step refinement using previous mask predictions.
103
+ multimask_output (bool): Whether to output multimask at each point of the grid.
104
+ """
105
+
106
+ assert (points_per_side is None) != (
107
+ point_grids is None
108
+ ), "Exactly one of points_per_side or point_grid must be provided."
109
+ if points_per_side is not None:
110
+ self.point_grids = build_all_layer_point_grids(
111
+ points_per_side,
112
+ crop_n_layers,
113
+ crop_n_points_downscale_factor,
114
+ )
115
+ elif point_grids is not None:
116
+ self.point_grids = point_grids
117
+ else:
118
+ raise ValueError("Can't have both points_per_side and point_grid be None.")
119
+
120
+ assert output_mode in [
121
+ "binary_mask",
122
+ "uncompressed_rle",
123
+ "coco_rle",
124
+ ], f"Unknown output_mode {output_mode}."
125
+ if output_mode == "coco_rle":
126
+ try:
127
+ from pycocotools import mask as mask_utils # type: ignore # noqa: F401
128
+ except ImportError as e:
129
+ print("Please install pycocotools")
130
+ raise e
131
+
132
+ self.predictor = SAM2ImagePredictor(
133
+ model,
134
+ max_hole_area=min_mask_region_area,
135
+ max_sprinkle_area=min_mask_region_area,
136
+ )
137
+ self.points_per_batch = points_per_batch
138
+ self.pred_iou_thresh = pred_iou_thresh
139
+ self.stability_score_thresh = stability_score_thresh
140
+ self.stability_score_offset = stability_score_offset
141
+ self.mask_threshold = mask_threshold
142
+ self.box_nms_thresh = box_nms_thresh
143
+ self.crop_n_layers = crop_n_layers
144
+ self.crop_nms_thresh = crop_nms_thresh
145
+ self.crop_overlap_ratio = crop_overlap_ratio
146
+ self.crop_n_points_downscale_factor = crop_n_points_downscale_factor
147
+ self.min_mask_region_area = min_mask_region_area
148
+ self.output_mode = output_mode
149
+ self.use_m2m = use_m2m
150
+ self.multimask_output = multimask_output
151
+
152
+ @classmethod
153
+ def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2AutomaticMaskGenerator":
154
+ """
155
+ Load a pretrained model from the Hugging Face hub.
156
+
157
+ Arguments:
158
+ model_id (str): The Hugging Face repository ID.
159
+ **kwargs: Additional arguments to pass to the model constructor.
160
+
161
+ Returns:
162
+ (SAM2AutomaticMaskGenerator): The loaded model.
163
+ """
164
+ from sam2.build_sam import build_sam2_hf
165
+
166
+ sam_model = build_sam2_hf(model_id, **kwargs)
167
+ return cls(sam_model, **kwargs)
168
+
169
+ @torch.no_grad()
170
+ def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:
171
+ """
172
+ Generates masks for the given image.
173
+
174
+ Arguments:
175
+ image (np.ndarray): The image to generate masks for, in HWC uint8 format.
176
+
177
+ Returns:
178
+ list(dict(str, any)): A list over records for masks. Each record is
179
+ a dict containing the following keys:
180
+ segmentation (dict(str, any) or np.ndarray): The mask. If
181
+ output_mode='binary_mask', is an array of shape HW. Otherwise,
182
+ is a dictionary containing the RLE.
183
+ bbox (list(float)): The box around the mask, in XYWH format.
184
+ area (int): The area in pixels of the mask.
185
+ predicted_iou (float): The model's own prediction of the mask's
186
+ quality. This is filtered by the pred_iou_thresh parameter.
187
+ point_coords (list(list(float))): The point coordinates input
188
+ to the model to generate this mask.
189
+ stability_score (float): A measure of the mask's quality. This
190
+ is filtered on using the stability_score_thresh parameter.
191
+ crop_box (list(float)): The crop of the image used to generate
192
+ the mask, given in XYWH format.
193
+ """
194
+
195
+ # Generate masks
196
+ mask_data = self._generate_masks(image)
197
+
198
+ # Encode masks
199
+ if self.output_mode == "coco_rle":
200
+ mask_data["segmentations"] = [
201
+ coco_encode_rle(rle) for rle in mask_data["rles"]
202
+ ]
203
+ elif self.output_mode == "binary_mask":
204
+ mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]]
205
+ else:
206
+ mask_data["segmentations"] = mask_data["rles"]
207
+
208
+ # Write mask records
209
+ curr_anns = []
210
+ for idx in range(len(mask_data["segmentations"])):
211
+ ann = {
212
+ "segmentation": mask_data["segmentations"][idx],
213
+ "area": area_from_rle(mask_data["rles"][idx]),
214
+ "bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(),
215
+ "predicted_iou": mask_data["iou_preds"][idx].item(),
216
+ "point_coords": [mask_data["points"][idx].tolist()],
217
+ "stability_score": mask_data["stability_score"][idx].item(),
218
+ "crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(),
219
+ }
220
+ curr_anns.append(ann)
221
+
222
+ return curr_anns
223
+
224
+ def _generate_masks(self, image: np.ndarray) -> MaskData:
225
+ orig_size = image.shape[:2]
226
+ crop_boxes, layer_idxs = generate_crop_boxes(
227
+ orig_size, self.crop_n_layers, self.crop_overlap_ratio
228
+ )
229
+
230
+ # Iterate over image crops
231
+ data = MaskData()
232
+ for crop_box, layer_idx in zip(crop_boxes, layer_idxs):
233
+ crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)
234
+ data.cat(crop_data)
235
+
236
+ # Remove duplicate masks between crops
237
+ if len(crop_boxes) > 1:
238
+ # Prefer masks from smaller crops
239
+ scores = 1 / box_area(data["crop_boxes"])
240
+ scores = scores.to(data["boxes"].device)
241
+ keep_by_nms = batched_nms(
242
+ data["boxes"].float(),
243
+ scores,
244
+ torch.zeros_like(data["boxes"][:, 0]), # categories
245
+ iou_threshold=self.crop_nms_thresh,
246
+ )
247
+ data.filter(keep_by_nms)
248
+ data.to_numpy()
249
+ return data
250
+
251
+ def _process_crop(
252
+ self,
253
+ image: np.ndarray,
254
+ crop_box: List[int],
255
+ crop_layer_idx: int,
256
+ orig_size: Tuple[int, ...],
257
+ ) -> MaskData:
258
+ # Crop the image and calculate embeddings
259
+ x0, y0, x1, y1 = crop_box
260
+ cropped_im = image[y0:y1, x0:x1, :]
261
+ cropped_im_size = cropped_im.shape[:2]
262
+ self.predictor.set_image(cropped_im)
263
+
264
+ # Get points for this crop
265
+ points_scale = np.array(cropped_im_size)[None, ::-1]
266
+ points_for_image = self.point_grids[crop_layer_idx] * points_scale
267
+
268
+ # Generate masks for this crop in batches
269
+ data = MaskData()
270
+ for (points,) in batch_iterator(self.points_per_batch, points_for_image):
271
+ batch_data = self._process_batch(
272
+ points, cropped_im_size, crop_box, orig_size, normalize=True
273
+ )
274
+ data.cat(batch_data)
275
+ del batch_data
276
+ self.predictor.reset_predictor()
277
+
278
+ # Remove duplicates within this crop.
279
+ keep_by_nms = batched_nms(
280
+ data["boxes"].float(),
281
+ data["iou_preds"],
282
+ torch.zeros_like(data["boxes"][:, 0]), # categories
283
+ iou_threshold=self.box_nms_thresh,
284
+ )
285
+ data.filter(keep_by_nms)
286
+
287
+ # Return to the original image frame
288
+ data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box)
289
+ data["points"] = uncrop_points(data["points"], crop_box)
290
+ data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))])
291
+
292
+ return data
293
+
294
+ def _process_batch(
295
+ self,
296
+ points: np.ndarray,
297
+ im_size: Tuple[int, ...],
298
+ crop_box: List[int],
299
+ orig_size: Tuple[int, ...],
300
+ normalize=False,
301
+ ) -> MaskData:
302
+ orig_h, orig_w = orig_size
303
+
304
+ # Run model on this batch
305
+ points = torch.as_tensor(
306
+ points, dtype=torch.float32, device=self.predictor.device
307
+ )
308
+ in_points = self.predictor._transforms.transform_coords(
309
+ points, normalize=normalize, orig_hw=im_size
310
+ )
311
+ in_labels = torch.ones(
312
+ in_points.shape[0], dtype=torch.int, device=in_points.device
313
+ )
314
+ masks, iou_preds, low_res_masks = self.predictor._predict(
315
+ in_points[:, None, :],
316
+ in_labels[:, None],
317
+ multimask_output=self.multimask_output,
318
+ return_logits=True,
319
+ )
320
+
321
+ # Serialize predictions and store in MaskData
322
+ data = MaskData(
323
+ masks=masks.flatten(0, 1),
324
+ iou_preds=iou_preds.flatten(0, 1),
325
+ points=points.repeat_interleave(masks.shape[1], dim=0),
326
+ low_res_masks=low_res_masks.flatten(0, 1),
327
+ )
328
+ del masks
329
+
330
+ if not self.use_m2m:
331
+ # Filter by predicted IoU
332
+ if self.pred_iou_thresh > 0.0:
333
+ keep_mask = data["iou_preds"] > self.pred_iou_thresh
334
+ data.filter(keep_mask)
335
+
336
+ # Calculate and filter by stability score
337
+ data["stability_score"] = calculate_stability_score(
338
+ data["masks"], self.mask_threshold, self.stability_score_offset
339
+ )
340
+ if self.stability_score_thresh > 0.0:
341
+ keep_mask = data["stability_score"] >= self.stability_score_thresh
342
+ data.filter(keep_mask)
343
+ else:
344
+ # One step refinement using previous mask predictions
345
+ in_points = self.predictor._transforms.transform_coords(
346
+ data["points"], normalize=normalize, orig_hw=im_size
347
+ )
348
+ labels = torch.ones(
349
+ in_points.shape[0], dtype=torch.int, device=in_points.device
350
+ )
351
+ masks, ious = self.refine_with_m2m(
352
+ in_points, labels, data["low_res_masks"], self.points_per_batch
353
+ )
354
+ data["masks"] = masks.squeeze(1)
355
+ data["iou_preds"] = ious.squeeze(1)
356
+
357
+ if self.pred_iou_thresh > 0.0:
358
+ keep_mask = data["iou_preds"] > self.pred_iou_thresh
359
+ data.filter(keep_mask)
360
+
361
+ data["stability_score"] = calculate_stability_score(
362
+ data["masks"], self.mask_threshold, self.stability_score_offset
363
+ )
364
+ if self.stability_score_thresh > 0.0:
365
+ keep_mask = data["stability_score"] >= self.stability_score_thresh
366
+ data.filter(keep_mask)
367
+
368
+ # Threshold masks and calculate boxes
369
+ data["masks"] = data["masks"] > self.mask_threshold
370
+ data["boxes"] = batched_mask_to_box(data["masks"])
371
+
372
+ # Filter boxes that touch crop boundaries
373
+ keep_mask = ~is_box_near_crop_edge(
374
+ data["boxes"], crop_box, [0, 0, orig_w, orig_h]
375
+ )
376
+ if not torch.all(keep_mask):
377
+ data.filter(keep_mask)
378
+
379
+ # Compress to RLE
380
+ data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w)
381
+ data["rles"] = mask_to_rle_pytorch(data["masks"])
382
+ del data["masks"]
383
+
384
+ return data
385
+
386
+ @staticmethod
387
+ def postprocess_small_regions(
388
+ mask_data: MaskData, min_area: int, nms_thresh: float
389
+ ) -> MaskData:
390
+ """
391
+ Removes small disconnected regions and holes in masks, then reruns
392
+ box NMS to remove any new duplicates.
393
+
394
+ Edits mask_data in place.
395
+
396
+ Requires open-cv as a dependency.
397
+ """
398
+ if len(mask_data["rles"]) == 0:
399
+ return mask_data
400
+
401
+ # Filter small disconnected regions and holes
402
+ new_masks = []
403
+ scores = []
404
+ for rle in mask_data["rles"]:
405
+ mask = rle_to_mask(rle)
406
+
407
+ mask, changed = remove_small_regions(mask, min_area, mode="holes")
408
+ unchanged = not changed
409
+ mask, changed = remove_small_regions(mask, min_area, mode="islands")
410
+ unchanged = unchanged and not changed
411
+
412
+ new_masks.append(torch.as_tensor(mask).unsqueeze(0))
413
+ # Give score=0 to changed masks and score=1 to unchanged masks
414
+ # so NMS will prefer ones that didn't need postprocessing
415
+ scores.append(float(unchanged))
416
+
417
+ # Recalculate boxes and remove any new duplicates
418
+ masks = torch.cat(new_masks, dim=0)
419
+ boxes = batched_mask_to_box(masks)
420
+ keep_by_nms = batched_nms(
421
+ boxes.float(),
422
+ torch.as_tensor(scores),
423
+ torch.zeros_like(boxes[:, 0]), # categories
424
+ iou_threshold=nms_thresh,
425
+ )
426
+
427
+ # Only recalculate RLEs for masks that have changed
428
+ for i_mask in keep_by_nms:
429
+ if scores[i_mask] == 0.0:
430
+ mask_torch = masks[i_mask].unsqueeze(0)
431
+ mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0]
432
+ mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly
433
+ mask_data.filter(keep_by_nms)
434
+
435
+ return mask_data
436
+
437
+ def refine_with_m2m(self, points, point_labels, low_res_masks, points_per_batch):
438
+ new_masks = []
439
+ new_iou_preds = []
440
+
441
+ for cur_points, cur_point_labels, low_res_mask in batch_iterator(
442
+ points_per_batch, points, point_labels, low_res_masks
443
+ ):
444
+ best_masks, best_iou_preds, _ = self.predictor._predict(
445
+ cur_points[:, None, :],
446
+ cur_point_labels[:, None],
447
+ mask_input=low_res_mask[:, None, :],
448
+ multimask_output=False,
449
+ return_logits=True,
450
+ )
451
+ new_masks.append(best_masks)
452
+ new_iou_preds.append(best_iou_preds)
453
+ masks = torch.cat(new_masks, dim=0)
454
+ return masks, torch.cat(new_iou_preds, dim=0)
sam2/build_sam.py ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import logging
8
+ import os
9
+
10
+ import torch
11
+ from hydra import compose
12
+ from hydra.utils import instantiate
13
+ from omegaconf import OmegaConf
14
+
15
+ import sam2
16
+
17
+ # Check if the user is running Python from the parent directory of the sam2 repo
18
+ # (i.e. the directory where this repo is cloned into) -- this is not supported since
19
+ # it could shadow the sam2 package and cause issues.
20
+ if os.path.isdir(os.path.join(sam2.__path__[0], "sam2")):
21
+ # If the user has "sam2/sam2" in their path, they are likey importing the repo itself
22
+ # as "sam2" rather than importing the "sam2" python package (i.e. "sam2/sam2" directory).
23
+ # This typically happens because the user is running Python from the parent directory
24
+ # that contains the sam2 repo they cloned.
25
+ raise RuntimeError(
26
+ "You're likely running Python from the parent directory of the sam2 repository "
27
+ "(i.e. the directory where https://github.com/facebookresearch/sam2 is cloned into). "
28
+ "This is not supported since the `sam2` Python package could be shadowed by the "
29
+ "repository name (the repository is also named `sam2` and contains the Python package "
30
+ "in `sam2/sam2`). Please run Python from another directory (e.g. from the repo dir "
31
+ "rather than its parent dir, or from your home directory) after installing SAM 2."
32
+ )
33
+
34
+
35
+ HF_MODEL_ID_TO_FILENAMES = {
36
+ "facebook/sam2-hiera-tiny": (
37
+ "configs/sam2/sam2_hiera_t.yaml",
38
+ "sam2_hiera_tiny.pt",
39
+ ),
40
+ "facebook/sam2-hiera-small": (
41
+ "configs/sam2/sam2_hiera_s.yaml",
42
+ "sam2_hiera_small.pt",
43
+ ),
44
+ "facebook/sam2-hiera-base-plus": (
45
+ "configs/sam2/sam2_hiera_b+.yaml",
46
+ "sam2_hiera_base_plus.pt",
47
+ ),
48
+ "facebook/sam2-hiera-large": (
49
+ "configs/sam2/sam2_hiera_l.yaml",
50
+ "sam2_hiera_large.pt",
51
+ ),
52
+ "facebook/sam2.1-hiera-tiny": (
53
+ "configs/sam2.1/sam2.1_hiera_t.yaml",
54
+ "sam2.1_hiera_tiny.pt",
55
+ ),
56
+ "facebook/sam2.1-hiera-small": (
57
+ "configs/sam2.1/sam2.1_hiera_s.yaml",
58
+ "sam2.1_hiera_small.pt",
59
+ ),
60
+ "facebook/sam2.1-hiera-base-plus": (
61
+ "configs/sam2.1/sam2.1_hiera_b+.yaml",
62
+ "sam2.1_hiera_base_plus.pt",
63
+ ),
64
+ "facebook/sam2.1-hiera-large": (
65
+ "configs/sam2.1/sam2.1_hiera_l.yaml",
66
+ "sam2.1_hiera_large.pt",
67
+ ),
68
+ }
69
+
70
+
71
+ def build_sam2(
72
+ config_file,
73
+ ckpt_path=None,
74
+ device="cuda",
75
+ mode="eval",
76
+ hydra_overrides_extra=[],
77
+ apply_postprocessing=True,
78
+ **kwargs,
79
+ ):
80
+
81
+ if apply_postprocessing:
82
+ hydra_overrides_extra = hydra_overrides_extra.copy()
83
+ hydra_overrides_extra += [
84
+ # dynamically fall back to multi-mask if the single mask is not stable
85
+ "++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
86
+ "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
87
+ "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
88
+ ]
89
+ # Read config and init model
90
+ cfg = compose(config_name=config_file, overrides=hydra_overrides_extra)
91
+ OmegaConf.resolve(cfg)
92
+ model = instantiate(cfg.model, _recursive_=True)
93
+ _load_checkpoint(model, ckpt_path)
94
+ model = model.to(device)
95
+ if mode == "eval":
96
+ model.eval()
97
+ return model
98
+
99
+
100
+ def build_sam2_video_predictor(
101
+ config_file,
102
+ ckpt_path=None,
103
+ device="cuda",
104
+ mode="eval",
105
+ hydra_overrides_extra=[],
106
+ apply_postprocessing=True,
107
+ **kwargs,
108
+ ):
109
+ hydra_overrides = [
110
+ "++model._target_=sam2.sam2_video_predictor.SAM2VideoPredictor",
111
+ ]
112
+ if apply_postprocessing:
113
+ hydra_overrides_extra = hydra_overrides_extra.copy()
114
+ hydra_overrides_extra += [
115
+ # dynamically fall back to multi-mask if the single mask is not stable
116
+ "++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
117
+ "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
118
+ "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
119
+ # the sigmoid mask logits on interacted frames with clicks in the memory encoder so that the encoded masks are exactly as what users see from clicking
120
+ "++model.binarize_mask_from_pts_for_mem_enc=true",
121
+ # fill small holes in the low-res masks up to `fill_hole_area` (before resizing them to the original video resolution)
122
+ "++model.fill_hole_area=8",
123
+ ]
124
+ hydra_overrides.extend(hydra_overrides_extra)
125
+
126
+ # Read config and init model
127
+ cfg = compose(config_name=config_file, overrides=hydra_overrides)
128
+ OmegaConf.resolve(cfg)
129
+ model = instantiate(cfg.model, _recursive_=True)
130
+ _load_checkpoint(model, ckpt_path)
131
+ model = model.to(device)
132
+ if mode == "eval":
133
+ model.eval()
134
+ return model
135
+
136
+
137
+ def _hf_download(model_id):
138
+ from huggingface_hub import hf_hub_download
139
+
140
+ config_name, checkpoint_name = HF_MODEL_ID_TO_FILENAMES[model_id]
141
+ ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name)
142
+ return config_name, ckpt_path
143
+
144
+
145
+ def build_sam2_hf(model_id, **kwargs):
146
+ config_name, ckpt_path = _hf_download(model_id)
147
+ return build_sam2(config_file=config_name, ckpt_path=ckpt_path, **kwargs)
148
+
149
+
150
+ def build_sam2_video_predictor_hf(model_id, **kwargs):
151
+ config_name, ckpt_path = _hf_download(model_id)
152
+ return build_sam2_video_predictor(
153
+ config_file=config_name, ckpt_path=ckpt_path, **kwargs
154
+ )
155
+
156
+
157
+ def _load_checkpoint(model, ckpt_path):
158
+ if ckpt_path is not None:
159
+ sd = torch.load(ckpt_path, map_location="cpu", weights_only=True)["model"]
160
+ missing_keys, unexpected_keys = model.load_state_dict(sd)
161
+ if missing_keys:
162
+ logging.error(missing_keys)
163
+ raise RuntimeError()
164
+ if unexpected_keys:
165
+ logging.error(unexpected_keys)
166
+ raise RuntimeError()
167
+ logging.info("Loaded checkpoint sucessfully")
sam2/configs/sam2.1/sam2.1_hiera_b+.yaml ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+
3
+ # Model
4
+ model:
5
+ _target_: sam2.modeling.sam2_base.SAM2Base
6
+ image_encoder:
7
+ _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
8
+ scalp: 1
9
+ trunk:
10
+ _target_: sam2.modeling.backbones.hieradet.Hiera
11
+ embed_dim: 112
12
+ num_heads: 2
13
+ neck:
14
+ _target_: sam2.modeling.backbones.image_encoder.FpnNeck
15
+ position_encoding:
16
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
17
+ num_pos_feats: 256
18
+ normalize: true
19
+ scale: null
20
+ temperature: 10000
21
+ d_model: 256
22
+ backbone_channel_list: [896, 448, 224, 112]
23
+ fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
24
+ fpn_interp_model: nearest
25
+
26
+ memory_attention:
27
+ _target_: sam2.modeling.memory_attention.MemoryAttention
28
+ d_model: 256
29
+ pos_enc_at_input: true
30
+ layer:
31
+ _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
32
+ activation: relu
33
+ dim_feedforward: 2048
34
+ dropout: 0.1
35
+ pos_enc_at_attn: false
36
+ self_attention:
37
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
38
+ rope_theta: 10000.0
39
+ feat_sizes: [32, 32]
40
+ embedding_dim: 256
41
+ num_heads: 1
42
+ downsample_rate: 1
43
+ dropout: 0.1
44
+ d_model: 256
45
+ pos_enc_at_cross_attn_keys: true
46
+ pos_enc_at_cross_attn_queries: false
47
+ cross_attention:
48
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
49
+ rope_theta: 10000.0
50
+ feat_sizes: [32, 32]
51
+ rope_k_repeat: True
52
+ embedding_dim: 256
53
+ num_heads: 1
54
+ downsample_rate: 1
55
+ dropout: 0.1
56
+ kv_in_dim: 64
57
+ num_layers: 4
58
+
59
+ memory_encoder:
60
+ _target_: sam2.modeling.memory_encoder.MemoryEncoder
61
+ out_dim: 64
62
+ position_encoding:
63
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
64
+ num_pos_feats: 64
65
+ normalize: true
66
+ scale: null
67
+ temperature: 10000
68
+ mask_downsampler:
69
+ _target_: sam2.modeling.memory_encoder.MaskDownSampler
70
+ kernel_size: 3
71
+ stride: 2
72
+ padding: 1
73
+ fuser:
74
+ _target_: sam2.modeling.memory_encoder.Fuser
75
+ layer:
76
+ _target_: sam2.modeling.memory_encoder.CXBlock
77
+ dim: 256
78
+ kernel_size: 7
79
+ padding: 3
80
+ layer_scale_init_value: 1e-6
81
+ use_dwconv: True # depth-wise convs
82
+ num_layers: 2
83
+
84
+ num_maskmem: 7
85
+ image_size: 1024
86
+ # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
87
+ sigmoid_scale_for_mem_enc: 20.0
88
+ sigmoid_bias_for_mem_enc: -10.0
89
+ use_mask_input_as_output_without_sam: true
90
+ # Memory
91
+ directly_add_no_mem_embed: true
92
+ no_obj_embed_spatial: true
93
+ # use high-resolution feature map in the SAM mask decoder
94
+ use_high_res_features_in_sam: true
95
+ # output 3 masks on the first click on initial conditioning frames
96
+ multimask_output_in_sam: true
97
+ # SAM heads
98
+ iou_prediction_use_sigmoid: True
99
+ # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
100
+ use_obj_ptrs_in_encoder: true
101
+ add_tpos_enc_to_obj_ptrs: true
102
+ proj_tpos_enc_in_obj_ptrs: true
103
+ use_signed_tpos_enc_to_obj_ptrs: true
104
+ only_obj_ptrs_in_the_past_for_eval: true
105
+ # object occlusion prediction
106
+ pred_obj_scores: true
107
+ pred_obj_scores_mlp: true
108
+ fixed_no_obj_ptr: true
109
+ # multimask tracking settings
110
+ multimask_output_for_tracking: true
111
+ use_multimask_token_for_obj_ptr: true
112
+ multimask_min_pt_num: 0
113
+ multimask_max_pt_num: 1
114
+ use_mlp_for_obj_ptr_proj: true
115
+ # Compilation flag
116
+ compile_image_encoder: False
sam2/configs/sam2.1/sam2.1_hiera_l.yaml ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+
3
+ # Model
4
+ model:
5
+ _target_: sam2.modeling.sam2_base.SAM2Base
6
+ image_encoder:
7
+ _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
8
+ scalp: 1
9
+ trunk:
10
+ _target_: sam2.modeling.backbones.hieradet.Hiera
11
+ embed_dim: 144
12
+ num_heads: 2
13
+ stages: [2, 6, 36, 4]
14
+ global_att_blocks: [23, 33, 43]
15
+ window_pos_embed_bkg_spatial_size: [7, 7]
16
+ window_spec: [8, 4, 16, 8]
17
+ neck:
18
+ _target_: sam2.modeling.backbones.image_encoder.FpnNeck
19
+ position_encoding:
20
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
21
+ num_pos_feats: 256
22
+ normalize: true
23
+ scale: null
24
+ temperature: 10000
25
+ d_model: 256
26
+ backbone_channel_list: [1152, 576, 288, 144]
27
+ fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
28
+ fpn_interp_model: nearest
29
+
30
+ memory_attention:
31
+ _target_: sam2.modeling.memory_attention.MemoryAttention
32
+ d_model: 256
33
+ pos_enc_at_input: true
34
+ layer:
35
+ _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
36
+ activation: relu
37
+ dim_feedforward: 2048
38
+ dropout: 0.1
39
+ pos_enc_at_attn: false
40
+ self_attention:
41
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
42
+ rope_theta: 10000.0
43
+ feat_sizes: [32, 32]
44
+ embedding_dim: 256
45
+ num_heads: 1
46
+ downsample_rate: 1
47
+ dropout: 0.1
48
+ d_model: 256
49
+ pos_enc_at_cross_attn_keys: true
50
+ pos_enc_at_cross_attn_queries: false
51
+ cross_attention:
52
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
53
+ rope_theta: 10000.0
54
+ feat_sizes: [32, 32]
55
+ rope_k_repeat: True
56
+ embedding_dim: 256
57
+ num_heads: 1
58
+ downsample_rate: 1
59
+ dropout: 0.1
60
+ kv_in_dim: 64
61
+ num_layers: 4
62
+
63
+ memory_encoder:
64
+ _target_: sam2.modeling.memory_encoder.MemoryEncoder
65
+ out_dim: 64
66
+ position_encoding:
67
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
68
+ num_pos_feats: 64
69
+ normalize: true
70
+ scale: null
71
+ temperature: 10000
72
+ mask_downsampler:
73
+ _target_: sam2.modeling.memory_encoder.MaskDownSampler
74
+ kernel_size: 3
75
+ stride: 2
76
+ padding: 1
77
+ fuser:
78
+ _target_: sam2.modeling.memory_encoder.Fuser
79
+ layer:
80
+ _target_: sam2.modeling.memory_encoder.CXBlock
81
+ dim: 256
82
+ kernel_size: 7
83
+ padding: 3
84
+ layer_scale_init_value: 1e-6
85
+ use_dwconv: True # depth-wise convs
86
+ num_layers: 2
87
+
88
+ num_maskmem: 7
89
+ image_size: 1024
90
+ # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
91
+ sigmoid_scale_for_mem_enc: 20.0
92
+ sigmoid_bias_for_mem_enc: -10.0
93
+ use_mask_input_as_output_without_sam: true
94
+ # Memory
95
+ directly_add_no_mem_embed: true
96
+ no_obj_embed_spatial: true
97
+ # use high-resolution feature map in the SAM mask decoder
98
+ use_high_res_features_in_sam: true
99
+ # output 3 masks on the first click on initial conditioning frames
100
+ multimask_output_in_sam: true
101
+ # SAM heads
102
+ iou_prediction_use_sigmoid: True
103
+ # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
104
+ use_obj_ptrs_in_encoder: true
105
+ add_tpos_enc_to_obj_ptrs: true
106
+ proj_tpos_enc_in_obj_ptrs: true
107
+ use_signed_tpos_enc_to_obj_ptrs: true
108
+ only_obj_ptrs_in_the_past_for_eval: true
109
+ # object occlusion prediction
110
+ pred_obj_scores: true
111
+ pred_obj_scores_mlp: true
112
+ fixed_no_obj_ptr: true
113
+ # multimask tracking settings
114
+ multimask_output_for_tracking: true
115
+ use_multimask_token_for_obj_ptr: true
116
+ multimask_min_pt_num: 0
117
+ multimask_max_pt_num: 1
118
+ use_mlp_for_obj_ptr_proj: true
119
+ # Compilation flag
120
+ compile_image_encoder: False
sam2/configs/sam2.1/sam2.1_hiera_s.yaml ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+
3
+ # Model
4
+ model:
5
+ _target_: sam2.modeling.sam2_base.SAM2Base
6
+ image_encoder:
7
+ _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
8
+ scalp: 1
9
+ trunk:
10
+ _target_: sam2.modeling.backbones.hieradet.Hiera
11
+ embed_dim: 96
12
+ num_heads: 1
13
+ stages: [1, 2, 11, 2]
14
+ global_att_blocks: [7, 10, 13]
15
+ window_pos_embed_bkg_spatial_size: [7, 7]
16
+ neck:
17
+ _target_: sam2.modeling.backbones.image_encoder.FpnNeck
18
+ position_encoding:
19
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
20
+ num_pos_feats: 256
21
+ normalize: true
22
+ scale: null
23
+ temperature: 10000
24
+ d_model: 256
25
+ backbone_channel_list: [768, 384, 192, 96]
26
+ fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
27
+ fpn_interp_model: nearest
28
+
29
+ memory_attention:
30
+ _target_: sam2.modeling.memory_attention.MemoryAttention
31
+ d_model: 256
32
+ pos_enc_at_input: true
33
+ layer:
34
+ _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
35
+ activation: relu
36
+ dim_feedforward: 2048
37
+ dropout: 0.1
38
+ pos_enc_at_attn: false
39
+ self_attention:
40
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
41
+ rope_theta: 10000.0
42
+ feat_sizes: [32, 32]
43
+ embedding_dim: 256
44
+ num_heads: 1
45
+ downsample_rate: 1
46
+ dropout: 0.1
47
+ d_model: 256
48
+ pos_enc_at_cross_attn_keys: true
49
+ pos_enc_at_cross_attn_queries: false
50
+ cross_attention:
51
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
52
+ rope_theta: 10000.0
53
+ feat_sizes: [32, 32]
54
+ rope_k_repeat: True
55
+ embedding_dim: 256
56
+ num_heads: 1
57
+ downsample_rate: 1
58
+ dropout: 0.1
59
+ kv_in_dim: 64
60
+ num_layers: 4
61
+
62
+ memory_encoder:
63
+ _target_: sam2.modeling.memory_encoder.MemoryEncoder
64
+ out_dim: 64
65
+ position_encoding:
66
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
67
+ num_pos_feats: 64
68
+ normalize: true
69
+ scale: null
70
+ temperature: 10000
71
+ mask_downsampler:
72
+ _target_: sam2.modeling.memory_encoder.MaskDownSampler
73
+ kernel_size: 3
74
+ stride: 2
75
+ padding: 1
76
+ fuser:
77
+ _target_: sam2.modeling.memory_encoder.Fuser
78
+ layer:
79
+ _target_: sam2.modeling.memory_encoder.CXBlock
80
+ dim: 256
81
+ kernel_size: 7
82
+ padding: 3
83
+ layer_scale_init_value: 1e-6
84
+ use_dwconv: True # depth-wise convs
85
+ num_layers: 2
86
+
87
+ num_maskmem: 7
88
+ image_size: 1024
89
+ # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
90
+ sigmoid_scale_for_mem_enc: 20.0
91
+ sigmoid_bias_for_mem_enc: -10.0
92
+ use_mask_input_as_output_without_sam: true
93
+ # Memory
94
+ directly_add_no_mem_embed: true
95
+ no_obj_embed_spatial: true
96
+ # use high-resolution feature map in the SAM mask decoder
97
+ use_high_res_features_in_sam: true
98
+ # output 3 masks on the first click on initial conditioning frames
99
+ multimask_output_in_sam: true
100
+ # SAM heads
101
+ iou_prediction_use_sigmoid: True
102
+ # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
103
+ use_obj_ptrs_in_encoder: true
104
+ add_tpos_enc_to_obj_ptrs: true
105
+ proj_tpos_enc_in_obj_ptrs: true
106
+ use_signed_tpos_enc_to_obj_ptrs: true
107
+ only_obj_ptrs_in_the_past_for_eval: true
108
+ # object occlusion prediction
109
+ pred_obj_scores: true
110
+ pred_obj_scores_mlp: true
111
+ fixed_no_obj_ptr: true
112
+ # multimask tracking settings
113
+ multimask_output_for_tracking: true
114
+ use_multimask_token_for_obj_ptr: true
115
+ multimask_min_pt_num: 0
116
+ multimask_max_pt_num: 1
117
+ use_mlp_for_obj_ptr_proj: true
118
+ # Compilation flag
119
+ compile_image_encoder: False
sam2/configs/sam2.1/sam2.1_hiera_t.yaml ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+
3
+ # Model
4
+ model:
5
+ _target_: sam2.modeling.sam2_base.SAM2Base
6
+ image_encoder:
7
+ _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
8
+ scalp: 1
9
+ trunk:
10
+ _target_: sam2.modeling.backbones.hieradet.Hiera
11
+ embed_dim: 96
12
+ num_heads: 1
13
+ stages: [1, 2, 7, 2]
14
+ global_att_blocks: [5, 7, 9]
15
+ window_pos_embed_bkg_spatial_size: [7, 7]
16
+ neck:
17
+ _target_: sam2.modeling.backbones.image_encoder.FpnNeck
18
+ position_encoding:
19
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
20
+ num_pos_feats: 256
21
+ normalize: true
22
+ scale: null
23
+ temperature: 10000
24
+ d_model: 256
25
+ backbone_channel_list: [768, 384, 192, 96]
26
+ fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
27
+ fpn_interp_model: nearest
28
+
29
+ memory_attention:
30
+ _target_: sam2.modeling.memory_attention.MemoryAttention
31
+ d_model: 256
32
+ pos_enc_at_input: true
33
+ layer:
34
+ _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
35
+ activation: relu
36
+ dim_feedforward: 2048
37
+ dropout: 0.1
38
+ pos_enc_at_attn: false
39
+ self_attention:
40
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
41
+ rope_theta: 10000.0
42
+ feat_sizes: [32, 32]
43
+ embedding_dim: 256
44
+ num_heads: 1
45
+ downsample_rate: 1
46
+ dropout: 0.1
47
+ d_model: 256
48
+ pos_enc_at_cross_attn_keys: true
49
+ pos_enc_at_cross_attn_queries: false
50
+ cross_attention:
51
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
52
+ rope_theta: 10000.0
53
+ feat_sizes: [32, 32]
54
+ rope_k_repeat: True
55
+ embedding_dim: 256
56
+ num_heads: 1
57
+ downsample_rate: 1
58
+ dropout: 0.1
59
+ kv_in_dim: 64
60
+ num_layers: 4
61
+
62
+ memory_encoder:
63
+ _target_: sam2.modeling.memory_encoder.MemoryEncoder
64
+ out_dim: 64
65
+ position_encoding:
66
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
67
+ num_pos_feats: 64
68
+ normalize: true
69
+ scale: null
70
+ temperature: 10000
71
+ mask_downsampler:
72
+ _target_: sam2.modeling.memory_encoder.MaskDownSampler
73
+ kernel_size: 3
74
+ stride: 2
75
+ padding: 1
76
+ fuser:
77
+ _target_: sam2.modeling.memory_encoder.Fuser
78
+ layer:
79
+ _target_: sam2.modeling.memory_encoder.CXBlock
80
+ dim: 256
81
+ kernel_size: 7
82
+ padding: 3
83
+ layer_scale_init_value: 1e-6
84
+ use_dwconv: True # depth-wise convs
85
+ num_layers: 2
86
+
87
+ num_maskmem: 7
88
+ image_size: 1024
89
+ # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
90
+ # SAM decoder
91
+ sigmoid_scale_for_mem_enc: 20.0
92
+ sigmoid_bias_for_mem_enc: -10.0
93
+ use_mask_input_as_output_without_sam: true
94
+ # Memory
95
+ directly_add_no_mem_embed: true
96
+ no_obj_embed_spatial: true
97
+ # use high-resolution feature map in the SAM mask decoder
98
+ use_high_res_features_in_sam: true
99
+ # output 3 masks on the first click on initial conditioning frames
100
+ multimask_output_in_sam: true
101
+ # SAM heads
102
+ iou_prediction_use_sigmoid: True
103
+ # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
104
+ use_obj_ptrs_in_encoder: true
105
+ add_tpos_enc_to_obj_ptrs: true
106
+ proj_tpos_enc_in_obj_ptrs: true
107
+ use_signed_tpos_enc_to_obj_ptrs: true
108
+ only_obj_ptrs_in_the_past_for_eval: true
109
+ # object occlusion prediction
110
+ pred_obj_scores: true
111
+ pred_obj_scores_mlp: true
112
+ fixed_no_obj_ptr: true
113
+ # multimask tracking settings
114
+ multimask_output_for_tracking: true
115
+ use_multimask_token_for_obj_ptr: true
116
+ multimask_min_pt_num: 0
117
+ multimask_max_pt_num: 1
118
+ use_mlp_for_obj_ptr_proj: true
119
+ # Compilation flag
120
+ # HieraT does not currently support compilation, should always be set to False
121
+ compile_image_encoder: False
sam2/configs/sam2.1_training/sam2.1_hiera_b+_MOSE_finetune.yaml ADDED
@@ -0,0 +1,339 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+
3
+ scratch:
4
+ resolution: 1024
5
+ train_batch_size: 1
6
+ num_train_workers: 10
7
+ num_frames: 8
8
+ max_num_objects: 3
9
+ base_lr: 5.0e-6
10
+ vision_lr: 3.0e-06
11
+ phases_per_epoch: 1
12
+ num_epochs: 40
13
+
14
+ dataset:
15
+ # PATHS to Dataset
16
+ img_folder: /fsx-onevision/shared/data/academic_vos_data/MOSE/train/JPEGImages # PATH to MOSE JPEGImages folder
17
+ gt_folder: /fsx-onevision/shared/data/academic_vos_data/MOSE/train/Annotations/ # PATH to MOSE Annotations folder
18
+ file_list_txt: training/assets/MOSE_sample_train_list.txt # Optional PATH to filelist containing a subset of videos to be used for training
19
+ multiplier: 2
20
+
21
+ # Video transforms
22
+ vos:
23
+ train_transforms:
24
+ - _target_: training.dataset.transforms.ComposeAPI
25
+ transforms:
26
+ - _target_: training.dataset.transforms.RandomHorizontalFlip
27
+ consistent_transform: True
28
+ - _target_: training.dataset.transforms.RandomAffine
29
+ degrees: 25
30
+ shear: 20
31
+ image_interpolation: bilinear
32
+ consistent_transform: True
33
+ - _target_: training.dataset.transforms.RandomResizeAPI
34
+ sizes: ${scratch.resolution}
35
+ square: true
36
+ consistent_transform: True
37
+ - _target_: training.dataset.transforms.ColorJitter
38
+ consistent_transform: True
39
+ brightness: 0.1
40
+ contrast: 0.03
41
+ saturation: 0.03
42
+ hue: null
43
+ - _target_: training.dataset.transforms.RandomGrayscale
44
+ p: 0.05
45
+ consistent_transform: True
46
+ - _target_: training.dataset.transforms.ColorJitter
47
+ consistent_transform: False
48
+ brightness: 0.1
49
+ contrast: 0.05
50
+ saturation: 0.05
51
+ hue: null
52
+ - _target_: training.dataset.transforms.ToTensorAPI
53
+ - _target_: training.dataset.transforms.NormalizeAPI
54
+ mean: [0.485, 0.456, 0.406]
55
+ std: [0.229, 0.224, 0.225]
56
+
57
+ trainer:
58
+ _target_: training.trainer.Trainer
59
+ mode: train_only
60
+ max_epochs: ${times:${scratch.num_epochs},${scratch.phases_per_epoch}}
61
+ accelerator: cuda
62
+ seed_value: 123
63
+
64
+ model:
65
+ _target_: training.model.sam2.SAM2Train
66
+ image_encoder:
67
+ _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
68
+ scalp: 1
69
+ trunk:
70
+ _target_: sam2.modeling.backbones.hieradet.Hiera
71
+ embed_dim: 112
72
+ num_heads: 2
73
+ drop_path_rate: 0.1
74
+ neck:
75
+ _target_: sam2.modeling.backbones.image_encoder.FpnNeck
76
+ position_encoding:
77
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
78
+ num_pos_feats: 256
79
+ normalize: true
80
+ scale: null
81
+ temperature: 10000
82
+ d_model: 256
83
+ backbone_channel_list: [896, 448, 224, 112]
84
+ fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
85
+ fpn_interp_model: nearest
86
+
87
+ memory_attention:
88
+ _target_: sam2.modeling.memory_attention.MemoryAttention
89
+ d_model: 256
90
+ pos_enc_at_input: true
91
+ layer:
92
+ _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
93
+ activation: relu
94
+ dim_feedforward: 2048
95
+ dropout: 0.1
96
+ pos_enc_at_attn: false
97
+ self_attention:
98
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
99
+ rope_theta: 10000.0
100
+ feat_sizes: [32, 32]
101
+ embedding_dim: 256
102
+ num_heads: 1
103
+ downsample_rate: 1
104
+ dropout: 0.1
105
+ d_model: 256
106
+ pos_enc_at_cross_attn_keys: true
107
+ pos_enc_at_cross_attn_queries: false
108
+ cross_attention:
109
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
110
+ rope_theta: 10000.0
111
+ feat_sizes: [32, 32]
112
+ rope_k_repeat: True
113
+ embedding_dim: 256
114
+ num_heads: 1
115
+ downsample_rate: 1
116
+ dropout: 0.1
117
+ kv_in_dim: 64
118
+ num_layers: 4
119
+
120
+ memory_encoder:
121
+ _target_: sam2.modeling.memory_encoder.MemoryEncoder
122
+ out_dim: 64
123
+ position_encoding:
124
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
125
+ num_pos_feats: 64
126
+ normalize: true
127
+ scale: null
128
+ temperature: 10000
129
+ mask_downsampler:
130
+ _target_: sam2.modeling.memory_encoder.MaskDownSampler
131
+ kernel_size: 3
132
+ stride: 2
133
+ padding: 1
134
+ fuser:
135
+ _target_: sam2.modeling.memory_encoder.Fuser
136
+ layer:
137
+ _target_: sam2.modeling.memory_encoder.CXBlock
138
+ dim: 256
139
+ kernel_size: 7
140
+ padding: 3
141
+ layer_scale_init_value: 1e-6
142
+ use_dwconv: True # depth-wise convs
143
+ num_layers: 2
144
+
145
+ num_maskmem: 7
146
+ image_size: ${scratch.resolution}
147
+ # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
148
+ sigmoid_scale_for_mem_enc: 20.0
149
+ sigmoid_bias_for_mem_enc: -10.0
150
+ use_mask_input_as_output_without_sam: true
151
+ # Memory
152
+ directly_add_no_mem_embed: true
153
+ no_obj_embed_spatial: true
154
+ # use high-resolution feature map in the SAM mask decoder
155
+ use_high_res_features_in_sam: true
156
+ # output 3 masks on the first click on initial conditioning frames
157
+ multimask_output_in_sam: true
158
+ # SAM heads
159
+ iou_prediction_use_sigmoid: True
160
+ # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
161
+ use_obj_ptrs_in_encoder: true
162
+ add_tpos_enc_to_obj_ptrs: true
163
+ proj_tpos_enc_in_obj_ptrs: true
164
+ use_signed_tpos_enc_to_obj_ptrs: true
165
+ only_obj_ptrs_in_the_past_for_eval: true
166
+ # object occlusion prediction
167
+ pred_obj_scores: true
168
+ pred_obj_scores_mlp: true
169
+ fixed_no_obj_ptr: true
170
+ # multimask tracking settings
171
+ multimask_output_for_tracking: true
172
+ use_multimask_token_for_obj_ptr: true
173
+ multimask_min_pt_num: 0
174
+ multimask_max_pt_num: 1
175
+ use_mlp_for_obj_ptr_proj: true
176
+ # Compilation flag
177
+ # compile_image_encoder: False
178
+
179
+ ####### Training specific params #######
180
+ # box/point input and corrections
181
+ prob_to_use_pt_input_for_train: 0.5
182
+ prob_to_use_pt_input_for_eval: 0.0
183
+ prob_to_use_box_input_for_train: 0.5 # 0.5*0.5 = 0.25 prob to use box instead of points
184
+ prob_to_use_box_input_for_eval: 0.0
185
+ prob_to_sample_from_gt_for_train: 0.1 # with a small prob, sampling correction points from GT mask instead of prediction errors
186
+ num_frames_to_correct_for_train: 2 # iteratively sample on random 1~2 frames (always include the first frame)
187
+ num_frames_to_correct_for_eval: 1 # only iteratively sample on first frame
188
+ rand_frames_to_correct_for_train: True # random #init-cond-frame ~ 2
189
+ add_all_frames_to_correct_as_cond: True # when a frame receives a correction click, it becomes a conditioning frame (even if it's not initially a conditioning frame)
190
+ # maximum 2 initial conditioning frames
191
+ num_init_cond_frames_for_train: 2
192
+ rand_init_cond_frames_for_train: True # random 1~2
193
+ num_correction_pt_per_frame: 7
194
+ use_act_ckpt_iterative_pt_sampling: false
195
+
196
+
197
+
198
+ num_init_cond_frames_for_eval: 1 # only mask on the first frame
199
+ forward_backbone_per_frame_for_eval: True
200
+
201
+
202
+ data:
203
+ train:
204
+ _target_: training.dataset.sam2_datasets.TorchTrainMixedDataset
205
+ phases_per_epoch: ${scratch.phases_per_epoch}
206
+ batch_sizes:
207
+ - ${scratch.train_batch_size}
208
+
209
+ datasets:
210
+ - _target_: training.dataset.utils.RepeatFactorWrapper
211
+ dataset:
212
+ _target_: training.dataset.utils.ConcatDataset
213
+ datasets:
214
+ - _target_: training.dataset.vos_dataset.VOSDataset
215
+ transforms: ${vos.train_transforms}
216
+ training: true
217
+ video_dataset:
218
+ _target_: training.dataset.vos_raw_dataset.PNGRawDataset
219
+ img_folder: ${dataset.img_folder}
220
+ gt_folder: ${dataset.gt_folder}
221
+ file_list_txt: ${dataset.file_list_txt}
222
+ sampler:
223
+ _target_: training.dataset.vos_sampler.RandomUniformSampler
224
+ num_frames: ${scratch.num_frames}
225
+ max_num_objects: ${scratch.max_num_objects}
226
+ multiplier: ${dataset.multiplier}
227
+ shuffle: True
228
+ num_workers: ${scratch.num_train_workers}
229
+ pin_memory: True
230
+ drop_last: True
231
+ collate_fn:
232
+ _target_: training.utils.data_utils.collate_fn
233
+ _partial_: true
234
+ dict_key: all
235
+
236
+ optim:
237
+ amp:
238
+ enabled: True
239
+ amp_dtype: bfloat16
240
+
241
+ optimizer:
242
+ _target_: torch.optim.AdamW
243
+
244
+ gradient_clip:
245
+ _target_: training.optimizer.GradientClipper
246
+ max_norm: 0.1
247
+ norm_type: 2
248
+
249
+ param_group_modifiers:
250
+ - _target_: training.optimizer.layer_decay_param_modifier
251
+ _partial_: True
252
+ layer_decay_value: 0.9
253
+ apply_to: 'image_encoder.trunk'
254
+ overrides:
255
+ - pattern: '*pos_embed*'
256
+ value: 1.0
257
+
258
+ options:
259
+ lr:
260
+ - scheduler:
261
+ _target_: fvcore.common.param_scheduler.CosineParamScheduler
262
+ start_value: ${scratch.base_lr}
263
+ end_value: ${divide:${scratch.base_lr},10}
264
+ - scheduler:
265
+ _target_: fvcore.common.param_scheduler.CosineParamScheduler
266
+ start_value: ${scratch.vision_lr}
267
+ end_value: ${divide:${scratch.vision_lr},10}
268
+ param_names:
269
+ - 'image_encoder.*'
270
+ weight_decay:
271
+ - scheduler:
272
+ _target_: fvcore.common.param_scheduler.ConstantParamScheduler
273
+ value: 0.1
274
+ - scheduler:
275
+ _target_: fvcore.common.param_scheduler.ConstantParamScheduler
276
+ value: 0.0
277
+ param_names:
278
+ - '*bias*'
279
+ module_cls_names: ['torch.nn.LayerNorm']
280
+
281
+ loss:
282
+ all:
283
+ _target_: training.loss_fns.MultiStepMultiMasksAndIous
284
+ weight_dict:
285
+ loss_mask: 20
286
+ loss_dice: 1
287
+ loss_iou: 1
288
+ loss_class: 1
289
+ supervise_all_iou: true
290
+ iou_use_l1_loss: true
291
+ pred_obj_scores: true
292
+ focal_gamma_obj_score: 0.0
293
+ focal_alpha_obj_score: -1.0
294
+
295
+ distributed:
296
+ backend: nccl
297
+ find_unused_parameters: True
298
+
299
+ logging:
300
+ tensorboard_writer:
301
+ _target_: training.utils.logger.make_tensorboard_logger
302
+ log_dir: ${launcher.experiment_log_dir}/tensorboard
303
+ flush_secs: 120
304
+ should_log: True
305
+ log_dir: ${launcher.experiment_log_dir}/logs
306
+ log_freq: 10
307
+
308
+ # initialize from a SAM 2 checkpoint
309
+ checkpoint:
310
+ save_dir: ${launcher.experiment_log_dir}/checkpoints
311
+ save_freq: 0 # 0 only last checkpoint is saved.
312
+ model_weight_initializer:
313
+ _partial_: True
314
+ _target_: training.utils.checkpoint_utils.load_state_dict_into_model
315
+ strict: True
316
+ ignore_unexpected_keys: null
317
+ ignore_missing_keys: null
318
+
319
+ state_dict:
320
+ _target_: training.utils.checkpoint_utils.load_checkpoint_and_apply_kernels
321
+ checkpoint_path: ./checkpoints/sam2.1_hiera_base_plus.pt # PATH to SAM 2.1 checkpoint
322
+ ckpt_state_dict_keys: ['model']
323
+
324
+ launcher:
325
+ num_nodes: 1
326
+ gpus_per_node: 8
327
+ experiment_log_dir: null # Path to log directory, defaults to ./sam2_logs/${config_name}
328
+
329
+ # SLURM args if running on a cluster
330
+ submitit:
331
+ partition: null
332
+ account: null
333
+ qos: null
334
+ cpus_per_task: 10
335
+ use_cluster: false
336
+ timeout_hour: 24
337
+ name: null
338
+ port_range: [10000, 65000]
339
+
sam2/csrc/connected_components.cu ADDED
@@ -0,0 +1,289 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ // All rights reserved.
3
+
4
+ // This source code is licensed under the license found in the
5
+ // LICENSE file in the root directory of this source tree.
6
+
7
+ // adapted from https://github.com/zsef123/Connected_components_PyTorch
8
+ // with license found in the LICENSE_cctorch file in the root directory.
9
+ #include <ATen/cuda/CUDAContext.h>
10
+ #include <cuda.h>
11
+ #include <cuda_runtime.h>
12
+ #include <torch/extension.h>
13
+ #include <torch/script.h>
14
+ #include <vector>
15
+
16
+ // 2d
17
+ #define BLOCK_ROWS 16
18
+ #define BLOCK_COLS 16
19
+
20
+ namespace cc2d {
21
+
22
+ template <typename T>
23
+ __device__ __forceinline__ unsigned char hasBit(T bitmap, unsigned char pos) {
24
+ return (bitmap >> pos) & 1;
25
+ }
26
+
27
+ __device__ int32_t find(const int32_t* s_buf, int32_t n) {
28
+ while (s_buf[n] != n)
29
+ n = s_buf[n];
30
+ return n;
31
+ }
32
+
33
+ __device__ int32_t find_n_compress(int32_t* s_buf, int32_t n) {
34
+ const int32_t id = n;
35
+ while (s_buf[n] != n) {
36
+ n = s_buf[n];
37
+ s_buf[id] = n;
38
+ }
39
+ return n;
40
+ }
41
+
42
+ __device__ void union_(int32_t* s_buf, int32_t a, int32_t b) {
43
+ bool done;
44
+ do {
45
+ a = find(s_buf, a);
46
+ b = find(s_buf, b);
47
+
48
+ if (a < b) {
49
+ int32_t old = atomicMin(s_buf + b, a);
50
+ done = (old == b);
51
+ b = old;
52
+ } else if (b < a) {
53
+ int32_t old = atomicMin(s_buf + a, b);
54
+ done = (old == a);
55
+ a = old;
56
+ } else
57
+ done = true;
58
+
59
+ } while (!done);
60
+ }
61
+
62
+ __global__ void
63
+ init_labeling(int32_t* label, const uint32_t W, const uint32_t H) {
64
+ const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
65
+ const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
66
+ const uint32_t idx = row * W + col;
67
+
68
+ if (row < H && col < W)
69
+ label[idx] = idx;
70
+ }
71
+
72
+ __global__ void
73
+ merge(uint8_t* img, int32_t* label, const uint32_t W, const uint32_t H) {
74
+ const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
75
+ const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
76
+ const uint32_t idx = row * W + col;
77
+
78
+ if (row >= H || col >= W)
79
+ return;
80
+
81
+ uint32_t P = 0;
82
+
83
+ if (img[idx])
84
+ P |= 0x777;
85
+ if (row + 1 < H && img[idx + W])
86
+ P |= 0x777 << 4;
87
+ if (col + 1 < W && img[idx + 1])
88
+ P |= 0x777 << 1;
89
+
90
+ if (col == 0)
91
+ P &= 0xEEEE;
92
+ if (col + 1 >= W)
93
+ P &= 0x3333;
94
+ else if (col + 2 >= W)
95
+ P &= 0x7777;
96
+
97
+ if (row == 0)
98
+ P &= 0xFFF0;
99
+ if (row + 1 >= H)
100
+ P &= 0xFF;
101
+
102
+ if (P > 0) {
103
+ // If need check about top-left pixel(if flag the first bit) and hit the
104
+ // top-left pixel
105
+ if (hasBit(P, 0) && img[idx - W - 1]) {
106
+ union_(label, idx, idx - 2 * W - 2); // top left block
107
+ }
108
+
109
+ if ((hasBit(P, 1) && img[idx - W]) || (hasBit(P, 2) && img[idx - W + 1]))
110
+ union_(label, idx, idx - 2 * W); // top bottom block
111
+
112
+ if (hasBit(P, 3) && img[idx + 2 - W])
113
+ union_(label, idx, idx - 2 * W + 2); // top right block
114
+
115
+ if ((hasBit(P, 4) && img[idx - 1]) || (hasBit(P, 8) && img[idx + W - 1]))
116
+ union_(label, idx, idx - 2); // just left block
117
+ }
118
+ }
119
+
120
+ __global__ void compression(int32_t* label, const int32_t W, const int32_t H) {
121
+ const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
122
+ const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
123
+ const uint32_t idx = row * W + col;
124
+
125
+ if (row < H && col < W)
126
+ find_n_compress(label, idx);
127
+ }
128
+
129
+ __global__ void final_labeling(
130
+ const uint8_t* img,
131
+ int32_t* label,
132
+ const int32_t W,
133
+ const int32_t H) {
134
+ const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
135
+ const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
136
+ const uint32_t idx = row * W + col;
137
+
138
+ if (row >= H || col >= W)
139
+ return;
140
+
141
+ int32_t y = label[idx] + 1;
142
+
143
+ if (img[idx])
144
+ label[idx] = y;
145
+ else
146
+ label[idx] = 0;
147
+
148
+ if (col + 1 < W) {
149
+ if (img[idx + 1])
150
+ label[idx + 1] = y;
151
+ else
152
+ label[idx + 1] = 0;
153
+
154
+ if (row + 1 < H) {
155
+ if (img[idx + W + 1])
156
+ label[idx + W + 1] = y;
157
+ else
158
+ label[idx + W + 1] = 0;
159
+ }
160
+ }
161
+
162
+ if (row + 1 < H) {
163
+ if (img[idx + W])
164
+ label[idx + W] = y;
165
+ else
166
+ label[idx + W] = 0;
167
+ }
168
+ }
169
+
170
+ __global__ void init_counting(
171
+ const int32_t* label,
172
+ int32_t* count_init,
173
+ const int32_t W,
174
+ const int32_t H) {
175
+ const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y);
176
+ const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x);
177
+ const uint32_t idx = row * W + col;
178
+
179
+ if (row >= H || col >= W)
180
+ return;
181
+
182
+ int32_t y = label[idx];
183
+ if (y > 0) {
184
+ int32_t count_idx = y - 1;
185
+ atomicAdd(count_init + count_idx, 1);
186
+ }
187
+ }
188
+
189
+ __global__ void final_counting(
190
+ const int32_t* label,
191
+ const int32_t* count_init,
192
+ int32_t* count_final,
193
+ const int32_t W,
194
+ const int32_t H) {
195
+ const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y);
196
+ const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x);
197
+ const uint32_t idx = row * W + col;
198
+
199
+ if (row >= H || col >= W)
200
+ return;
201
+
202
+ int32_t y = label[idx];
203
+ if (y > 0) {
204
+ int32_t count_idx = y - 1;
205
+ count_final[idx] = count_init[count_idx];
206
+ } else {
207
+ count_final[idx] = 0;
208
+ }
209
+ }
210
+
211
+ } // namespace cc2d
212
+
213
+ std::vector<torch::Tensor> get_connected_componnets(
214
+ const torch::Tensor& inputs) {
215
+ AT_ASSERTM(inputs.is_cuda(), "inputs must be a CUDA tensor");
216
+ AT_ASSERTM(inputs.ndimension() == 4, "inputs must be [N, 1, H, W] shape");
217
+ AT_ASSERTM(
218
+ inputs.scalar_type() == torch::kUInt8, "inputs must be a uint8 type");
219
+
220
+ const uint32_t N = inputs.size(0);
221
+ const uint32_t C = inputs.size(1);
222
+ const uint32_t H = inputs.size(2);
223
+ const uint32_t W = inputs.size(3);
224
+
225
+ AT_ASSERTM(C == 1, "inputs must be [N, 1, H, W] shape");
226
+ AT_ASSERTM((H % 2) == 0, "height must be an even number");
227
+ AT_ASSERTM((W % 2) == 0, "width must be an even number");
228
+
229
+ // label must be uint32_t
230
+ auto label_options =
231
+ torch::TensorOptions().dtype(torch::kInt32).device(inputs.device());
232
+ torch::Tensor labels = torch::zeros({N, C, H, W}, label_options);
233
+ torch::Tensor counts_init = torch::zeros({N, C, H, W}, label_options);
234
+ torch::Tensor counts_final = torch::zeros({N, C, H, W}, label_options);
235
+
236
+ dim3 grid = dim3(
237
+ ((W + 1) / 2 + BLOCK_COLS - 1) / BLOCK_COLS,
238
+ ((H + 1) / 2 + BLOCK_ROWS - 1) / BLOCK_ROWS);
239
+ dim3 block = dim3(BLOCK_COLS, BLOCK_ROWS);
240
+ dim3 grid_count =
241
+ dim3((W + BLOCK_COLS) / BLOCK_COLS, (H + BLOCK_ROWS) / BLOCK_ROWS);
242
+ dim3 block_count = dim3(BLOCK_COLS, BLOCK_ROWS);
243
+ cudaStream_t stream = at::cuda::getCurrentCUDAStream();
244
+
245
+ for (int n = 0; n < N; n++) {
246
+ uint32_t offset = n * H * W;
247
+
248
+ cc2d::init_labeling<<<grid, block, 0, stream>>>(
249
+ labels.data_ptr<int32_t>() + offset, W, H);
250
+ cc2d::merge<<<grid, block, 0, stream>>>(
251
+ inputs.data_ptr<uint8_t>() + offset,
252
+ labels.data_ptr<int32_t>() + offset,
253
+ W,
254
+ H);
255
+ cc2d::compression<<<grid, block, 0, stream>>>(
256
+ labels.data_ptr<int32_t>() + offset, W, H);
257
+ cc2d::final_labeling<<<grid, block, 0, stream>>>(
258
+ inputs.data_ptr<uint8_t>() + offset,
259
+ labels.data_ptr<int32_t>() + offset,
260
+ W,
261
+ H);
262
+
263
+ // get the counting of each pixel
264
+ cc2d::init_counting<<<grid_count, block_count, 0, stream>>>(
265
+ labels.data_ptr<int32_t>() + offset,
266
+ counts_init.data_ptr<int32_t>() + offset,
267
+ W,
268
+ H);
269
+ cc2d::final_counting<<<grid_count, block_count, 0, stream>>>(
270
+ labels.data_ptr<int32_t>() + offset,
271
+ counts_init.data_ptr<int32_t>() + offset,
272
+ counts_final.data_ptr<int32_t>() + offset,
273
+ W,
274
+ H);
275
+ }
276
+
277
+ // returned values are [labels, counts]
278
+ std::vector<torch::Tensor> outputs;
279
+ outputs.push_back(labels);
280
+ outputs.push_back(counts_final);
281
+ return outputs;
282
+ }
283
+
284
+ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
285
+ m.def(
286
+ "get_connected_componnets",
287
+ &get_connected_componnets,
288
+ "get_connected_componnets");
289
+ }
sam2/modeling/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
sam2/modeling/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (167 Bytes). View file
 
sam2/modeling/__pycache__/memory_attention.cpython-310.pyc ADDED
Binary file (5 kB). View file
 
sam2/modeling/__pycache__/memory_encoder.cpython-310.pyc ADDED
Binary file (4.99 kB). View file
 
sam2/modeling/__pycache__/position_encoding.cpython-310.pyc ADDED
Binary file (7.55 kB). View file
 
sam2/modeling/__pycache__/sam2_base.cpython-310.pyc ADDED
Binary file (19.4 kB). View file
 
sam2/modeling/__pycache__/sam2_utils.cpython-310.pyc ADDED
Binary file (11 kB). View file
 
sam2/modeling/backbones/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
sam2/modeling/backbones/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (177 Bytes). View file
 
sam2/modeling/backbones/__pycache__/hieradet.cpython-310.pyc ADDED
Binary file (7.74 kB). View file
 
sam2/modeling/backbones/__pycache__/image_encoder.cpython-310.pyc ADDED
Binary file (3.44 kB). View file
 
sam2/modeling/backbones/__pycache__/utils.cpython-310.pyc ADDED
Binary file (3.25 kB). View file
 
sam2/modeling/backbones/hieradet.py ADDED
@@ -0,0 +1,317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import logging
8
+ from functools import partial
9
+ from typing import List, Tuple, Union
10
+
11
+ import torch
12
+ import torch.nn as nn
13
+ import torch.nn.functional as F
14
+ from iopath.common.file_io import g_pathmgr
15
+
16
+ from sam2.modeling.backbones.utils import (
17
+ PatchEmbed,
18
+ window_partition,
19
+ window_unpartition,
20
+ )
21
+
22
+ from sam2.modeling.sam2_utils import DropPath, MLP
23
+
24
+
25
+ def do_pool(x: torch.Tensor, pool: nn.Module, norm: nn.Module = None) -> torch.Tensor:
26
+ if pool is None:
27
+ return x
28
+ # (B, H, W, C) -> (B, C, H, W)
29
+ x = x.permute(0, 3, 1, 2)
30
+ x = pool(x)
31
+ # (B, C, H', W') -> (B, H', W', C)
32
+ x = x.permute(0, 2, 3, 1)
33
+ if norm:
34
+ x = norm(x)
35
+
36
+ return x
37
+
38
+
39
+ class MultiScaleAttention(nn.Module):
40
+ def __init__(
41
+ self,
42
+ dim: int,
43
+ dim_out: int,
44
+ num_heads: int,
45
+ q_pool: nn.Module = None,
46
+ ):
47
+ super().__init__()
48
+
49
+ self.dim = dim
50
+ self.dim_out = dim_out
51
+ self.num_heads = num_heads
52
+ self.q_pool = q_pool
53
+ self.qkv = nn.Linear(dim, dim_out * 3)
54
+ self.proj = nn.Linear(dim_out, dim_out)
55
+
56
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
57
+ B, H, W, _ = x.shape
58
+ # qkv with shape (B, H * W, 3, nHead, C)
59
+ qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1)
60
+ # q, k, v with shape (B, H * W, nheads, C)
61
+ q, k, v = torch.unbind(qkv, 2)
62
+
63
+ # Q pooling (for downsample at stage changes)
64
+ if self.q_pool:
65
+ q = do_pool(q.reshape(B, H, W, -1), self.q_pool)
66
+ H, W = q.shape[1:3] # downsampled shape
67
+ q = q.reshape(B, H * W, self.num_heads, -1)
68
+
69
+ # Torch's SDPA expects [B, nheads, H*W, C] so we transpose
70
+ x = F.scaled_dot_product_attention(
71
+ q.transpose(1, 2),
72
+ k.transpose(1, 2),
73
+ v.transpose(1, 2),
74
+ )
75
+ # Transpose back
76
+ x = x.transpose(1, 2)
77
+ x = x.reshape(B, H, W, -1)
78
+
79
+ x = self.proj(x)
80
+
81
+ return x
82
+
83
+
84
+ class MultiScaleBlock(nn.Module):
85
+ def __init__(
86
+ self,
87
+ dim: int,
88
+ dim_out: int,
89
+ num_heads: int,
90
+ mlp_ratio: float = 4.0,
91
+ drop_path: float = 0.0,
92
+ norm_layer: Union[nn.Module, str] = "LayerNorm",
93
+ q_stride: Tuple[int, int] = None,
94
+ act_layer: nn.Module = nn.GELU,
95
+ window_size: int = 0,
96
+ ):
97
+ super().__init__()
98
+
99
+ if isinstance(norm_layer, str):
100
+ norm_layer = partial(getattr(nn, norm_layer), eps=1e-6)
101
+
102
+ self.dim = dim
103
+ self.dim_out = dim_out
104
+ self.norm1 = norm_layer(dim)
105
+
106
+ self.window_size = window_size
107
+
108
+ self.pool, self.q_stride = None, q_stride
109
+ if self.q_stride:
110
+ self.pool = nn.MaxPool2d(
111
+ kernel_size=q_stride, stride=q_stride, ceil_mode=False
112
+ )
113
+
114
+ self.attn = MultiScaleAttention(
115
+ dim,
116
+ dim_out,
117
+ num_heads=num_heads,
118
+ q_pool=self.pool,
119
+ )
120
+ self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
121
+
122
+ self.norm2 = norm_layer(dim_out)
123
+ self.mlp = MLP(
124
+ dim_out,
125
+ int(dim_out * mlp_ratio),
126
+ dim_out,
127
+ num_layers=2,
128
+ activation=act_layer,
129
+ )
130
+
131
+ if dim != dim_out:
132
+ self.proj = nn.Linear(dim, dim_out)
133
+
134
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
135
+ shortcut = x # B, H, W, C
136
+ x = self.norm1(x)
137
+
138
+ # Skip connection
139
+ if self.dim != self.dim_out:
140
+ shortcut = do_pool(self.proj(x), self.pool)
141
+
142
+ # Window partition
143
+ window_size = self.window_size
144
+ if window_size > 0:
145
+ H, W = x.shape[1], x.shape[2]
146
+ x, pad_hw = window_partition(x, window_size)
147
+
148
+ # Window Attention + Q Pooling (if stage change)
149
+ x = self.attn(x)
150
+ if self.q_stride:
151
+ # Shapes have changed due to Q pooling
152
+ window_size = self.window_size // self.q_stride[0]
153
+ H, W = shortcut.shape[1:3]
154
+
155
+ pad_h = (window_size - H % window_size) % window_size
156
+ pad_w = (window_size - W % window_size) % window_size
157
+ pad_hw = (H + pad_h, W + pad_w)
158
+
159
+ # Reverse window partition
160
+ if self.window_size > 0:
161
+ x = window_unpartition(x, window_size, pad_hw, (H, W))
162
+
163
+ x = shortcut + self.drop_path(x)
164
+ # MLP
165
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
166
+ return x
167
+
168
+
169
+ class Hiera(nn.Module):
170
+ """
171
+ Reference: https://arxiv.org/abs/2306.00989
172
+ """
173
+
174
+ def __init__(
175
+ self,
176
+ embed_dim: int = 96, # initial embed dim
177
+ num_heads: int = 1, # initial number of heads
178
+ drop_path_rate: float = 0.0, # stochastic depth
179
+ q_pool: int = 3, # number of q_pool stages
180
+ q_stride: Tuple[int, int] = (2, 2), # downsample stride bet. stages
181
+ stages: Tuple[int, ...] = (2, 3, 16, 3), # blocks per stage
182
+ dim_mul: float = 2.0, # dim_mul factor at stage shift
183
+ head_mul: float = 2.0, # head_mul factor at stage shift
184
+ window_pos_embed_bkg_spatial_size: Tuple[int, int] = (14, 14),
185
+ # window size per stage, when not using global att.
186
+ window_spec: Tuple[int, ...] = (
187
+ 8,
188
+ 4,
189
+ 14,
190
+ 7,
191
+ ),
192
+ # global attn in these blocks
193
+ global_att_blocks: Tuple[int, ...] = (
194
+ 12,
195
+ 16,
196
+ 20,
197
+ ),
198
+ weights_path=None,
199
+ return_interm_layers=True, # return feats from every stage
200
+ ):
201
+ super().__init__()
202
+
203
+ assert len(stages) == len(window_spec)
204
+ self.window_spec = window_spec
205
+
206
+ depth = sum(stages)
207
+ self.q_stride = q_stride
208
+ self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]
209
+ assert 0 <= q_pool <= len(self.stage_ends[:-1])
210
+ self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool]
211
+ self.return_interm_layers = return_interm_layers
212
+
213
+ self.patch_embed = PatchEmbed(
214
+ embed_dim=embed_dim,
215
+ )
216
+ # Which blocks have global att?
217
+ self.global_att_blocks = global_att_blocks
218
+
219
+ # Windowed positional embedding (https://arxiv.org/abs/2311.05613)
220
+ self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size
221
+ self.pos_embed = nn.Parameter(
222
+ torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size)
223
+ )
224
+ self.pos_embed_window = nn.Parameter(
225
+ torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0])
226
+ )
227
+
228
+ dpr = [
229
+ x.item() for x in torch.linspace(0, drop_path_rate, depth)
230
+ ] # stochastic depth decay rule
231
+
232
+ cur_stage = 1
233
+ self.blocks = nn.ModuleList()
234
+
235
+ for i in range(depth):
236
+ dim_out = embed_dim
237
+ # lags by a block, so first block of
238
+ # next stage uses an initial window size
239
+ # of previous stage and final window size of current stage
240
+ window_size = self.window_spec[cur_stage - 1]
241
+
242
+ if self.global_att_blocks is not None:
243
+ window_size = 0 if i in self.global_att_blocks else window_size
244
+
245
+ if i - 1 in self.stage_ends:
246
+ dim_out = int(embed_dim * dim_mul)
247
+ num_heads = int(num_heads * head_mul)
248
+ cur_stage += 1
249
+
250
+ block = MultiScaleBlock(
251
+ dim=embed_dim,
252
+ dim_out=dim_out,
253
+ num_heads=num_heads,
254
+ drop_path=dpr[i],
255
+ q_stride=self.q_stride if i in self.q_pool_blocks else None,
256
+ window_size=window_size,
257
+ )
258
+
259
+ embed_dim = dim_out
260
+ self.blocks.append(block)
261
+
262
+ self.channel_list = (
263
+ [self.blocks[i].dim_out for i in self.stage_ends[::-1]]
264
+ if return_interm_layers
265
+ else [self.blocks[-1].dim_out]
266
+ )
267
+
268
+ if weights_path is not None:
269
+ with g_pathmgr.open(weights_path, "rb") as f:
270
+ chkpt = torch.load(f, map_location="cpu")
271
+ logging.info("loading Hiera", self.load_state_dict(chkpt, strict=False))
272
+
273
+ def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor:
274
+ h, w = hw
275
+ window_embed = self.pos_embed_window
276
+ pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic")
277
+ pos_embed = pos_embed + window_embed.tile(
278
+ [x // y for x, y in zip(pos_embed.shape, window_embed.shape)]
279
+ )
280
+ pos_embed = pos_embed.permute(0, 2, 3, 1)
281
+ return pos_embed
282
+
283
+ def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
284
+ x = self.patch_embed(x)
285
+ # x: (B, H, W, C)
286
+
287
+ # Add pos embed
288
+ x = x + self._get_pos_embed(x.shape[1:3])
289
+
290
+ outputs = []
291
+ for i, blk in enumerate(self.blocks):
292
+ x = blk(x)
293
+ if (i == self.stage_ends[-1]) or (
294
+ i in self.stage_ends and self.return_interm_layers
295
+ ):
296
+ feats = x.permute(0, 3, 1, 2)
297
+ outputs.append(feats)
298
+
299
+ return outputs
300
+
301
+ def get_layer_id(self, layer_name):
302
+ # https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py#L33
303
+ num_layers = self.get_num_layers()
304
+
305
+ if layer_name.find("rel_pos") != -1:
306
+ return num_layers + 1
307
+ elif layer_name.find("pos_embed") != -1:
308
+ return 0
309
+ elif layer_name.find("patch_embed") != -1:
310
+ return 0
311
+ elif layer_name.find("blocks") != -1:
312
+ return int(layer_name.split("blocks")[1].split(".")[1]) + 1
313
+ else:
314
+ return num_layers + 1
315
+
316
+ def get_num_layers(self) -> int:
317
+ return len(self.blocks)
sam2/modeling/backbones/image_encoder.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from typing import List, Optional
8
+
9
+ import torch
10
+ import torch.nn as nn
11
+ import torch.nn.functional as F
12
+
13
+
14
+ class ImageEncoder(nn.Module):
15
+ def __init__(
16
+ self,
17
+ trunk: nn.Module,
18
+ neck: nn.Module,
19
+ scalp: int = 0,
20
+ ):
21
+ super().__init__()
22
+ self.trunk = trunk
23
+ self.neck = neck
24
+ self.scalp = scalp
25
+ assert (
26
+ self.trunk.channel_list == self.neck.backbone_channel_list
27
+ ), f"Channel dims of trunk and neck do not match. Trunk: {self.trunk.channel_list}, neck: {self.neck.backbone_channel_list}"
28
+
29
+ def forward(self, sample: torch.Tensor):
30
+ # Forward through backbone
31
+ features, pos = self.neck(self.trunk(sample))
32
+ if self.scalp > 0:
33
+ # Discard the lowest resolution features
34
+ features, pos = features[: -self.scalp], pos[: -self.scalp]
35
+
36
+ src = features[-1]
37
+ output = {
38
+ "vision_features": src,
39
+ "vision_pos_enc": pos,
40
+ "backbone_fpn": features,
41
+ }
42
+ return output
43
+
44
+
45
+ class FpnNeck(nn.Module):
46
+ """
47
+ A modified variant of Feature Pyramid Network (FPN) neck
48
+ (we remove output conv and also do bicubic interpolation similar to ViT
49
+ pos embed interpolation)
50
+ """
51
+
52
+ def __init__(
53
+ self,
54
+ position_encoding: nn.Module,
55
+ d_model: int,
56
+ backbone_channel_list: List[int],
57
+ kernel_size: int = 1,
58
+ stride: int = 1,
59
+ padding: int = 0,
60
+ fpn_interp_model: str = "bilinear",
61
+ fuse_type: str = "sum",
62
+ fpn_top_down_levels: Optional[List[int]] = None,
63
+ ):
64
+ """Initialize the neck
65
+ :param trunk: the backbone
66
+ :param position_encoding: the positional encoding to use
67
+ :param d_model: the dimension of the model
68
+ :param neck_norm: the normalization to use
69
+ """
70
+ super().__init__()
71
+ self.position_encoding = position_encoding
72
+ self.convs = nn.ModuleList()
73
+ self.backbone_channel_list = backbone_channel_list
74
+ self.d_model = d_model
75
+ for dim in backbone_channel_list:
76
+ current = nn.Sequential()
77
+ current.add_module(
78
+ "conv",
79
+ nn.Conv2d(
80
+ in_channels=dim,
81
+ out_channels=d_model,
82
+ kernel_size=kernel_size,
83
+ stride=stride,
84
+ padding=padding,
85
+ ),
86
+ )
87
+
88
+ self.convs.append(current)
89
+ self.fpn_interp_model = fpn_interp_model
90
+ assert fuse_type in ["sum", "avg"]
91
+ self.fuse_type = fuse_type
92
+
93
+ # levels to have top-down features in its outputs
94
+ # e.g. if fpn_top_down_levels is [2, 3], then only outputs of level 2 and 3
95
+ # have top-down propagation, while outputs of level 0 and level 1 have only
96
+ # lateral features from the same backbone level.
97
+ if fpn_top_down_levels is None:
98
+ # default is to have top-down features on all levels
99
+ fpn_top_down_levels = range(len(self.convs))
100
+ self.fpn_top_down_levels = list(fpn_top_down_levels)
101
+
102
+ def forward(self, xs: List[torch.Tensor]):
103
+
104
+ out = [None] * len(self.convs)
105
+ pos = [None] * len(self.convs)
106
+ assert len(xs) == len(self.convs)
107
+ # fpn forward pass
108
+ # see https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/fpn.py
109
+ prev_features = None
110
+ # forward in top-down order (from low to high resolution)
111
+ n = len(self.convs) - 1
112
+ for i in range(n, -1, -1):
113
+ x = xs[i]
114
+ lateral_features = self.convs[n - i](x)
115
+ if i in self.fpn_top_down_levels and prev_features is not None:
116
+ top_down_features = F.interpolate(
117
+ prev_features.to(dtype=torch.float32),
118
+ scale_factor=2.0,
119
+ mode=self.fpn_interp_model,
120
+ align_corners=(
121
+ None if self.fpn_interp_model == "nearest" else False
122
+ ),
123
+ antialias=False,
124
+ )
125
+ prev_features = lateral_features + top_down_features
126
+ if self.fuse_type == "avg":
127
+ prev_features /= 2
128
+ else:
129
+ prev_features = lateral_features
130
+ x_out = prev_features
131
+ out[i] = x_out
132
+ pos[i] = self.position_encoding(x_out).to(x_out.dtype)
133
+
134
+ return out, pos
sam2/modeling/backbones/utils.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ """Some utilities for backbones, in particular for windowing"""
8
+
9
+ from typing import Tuple
10
+
11
+ import torch
12
+ import torch.nn as nn
13
+ import torch.nn.functional as F
14
+
15
+
16
+ def window_partition(x, window_size):
17
+ """
18
+ Partition into non-overlapping windows with padding if needed.
19
+ Args:
20
+ x (tensor): input tokens with [B, H, W, C].
21
+ window_size (int): window size.
22
+ Returns:
23
+ windows: windows after partition with [B * num_windows, window_size, window_size, C].
24
+ (Hp, Wp): padded height and width before partition
25
+ """
26
+ B, H, W, C = x.shape
27
+
28
+ pad_h = (window_size - H % window_size) % window_size
29
+ pad_w = (window_size - W % window_size) % window_size
30
+ if pad_h > 0 or pad_w > 0:
31
+ x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
32
+ Hp, Wp = H + pad_h, W + pad_w
33
+
34
+ x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
35
+ windows = (
36
+ x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
37
+ )
38
+ return windows, (Hp, Wp)
39
+
40
+
41
+ def window_unpartition(windows, window_size, pad_hw, hw):
42
+ """
43
+ Window unpartition into original sequences and removing padding.
44
+ Args:
45
+ x (tensor): input tokens with [B * num_windows, window_size, window_size, C].
46
+ window_size (int): window size.
47
+ pad_hw (Tuple): padded height and width (Hp, Wp).
48
+ hw (Tuple): original height and width (H, W) before padding.
49
+ Returns:
50
+ x: unpartitioned sequences with [B, H, W, C].
51
+ """
52
+ Hp, Wp = pad_hw
53
+ H, W = hw
54
+ B = windows.shape[0] // (Hp * Wp // window_size // window_size)
55
+ x = windows.view(
56
+ B, Hp // window_size, Wp // window_size, window_size, window_size, -1
57
+ )
58
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
59
+
60
+ if Hp > H or Wp > W:
61
+ x = x[:, :H, :W, :].contiguous()
62
+ return x
63
+
64
+
65
+ class PatchEmbed(nn.Module):
66
+ """
67
+ Image to Patch Embedding.
68
+ """
69
+
70
+ def __init__(
71
+ self,
72
+ kernel_size: Tuple[int, ...] = (7, 7),
73
+ stride: Tuple[int, ...] = (4, 4),
74
+ padding: Tuple[int, ...] = (3, 3),
75
+ in_chans: int = 3,
76
+ embed_dim: int = 768,
77
+ ):
78
+ """
79
+ Args:
80
+ kernel_size (Tuple): kernel size of the projection layer.
81
+ stride (Tuple): stride of the projection layer.
82
+ padding (Tuple): padding size of the projection layer.
83
+ in_chans (int): Number of input image channels.
84
+ embed_dim (int): embed_dim (int): Patch embedding dimension.
85
+ """
86
+ super().__init__()
87
+ self.proj = nn.Conv2d(
88
+ in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
89
+ )
90
+
91
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
92
+ x = self.proj(x)
93
+ # B C H W -> B H W C
94
+ x = x.permute(0, 2, 3, 1)
95
+ return x
sam2/modeling/memory_attention.py ADDED
@@ -0,0 +1,205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from typing import Optional
8
+
9
+ import torch
10
+ from torch import nn, Tensor
11
+
12
+ from sam2.modeling.sam.transformer import RoPEAttention
13
+
14
+ from sam2.modeling.sam2_utils import get_activation_fn, get_clones
15
+ import pdb
16
+
17
+ class MemoryAttentionLayer(nn.Module):
18
+
19
+ def __init__(
20
+ self,
21
+ activation: str,
22
+ cross_attention: nn.Module,
23
+ d_model: int,
24
+ dim_feedforward: int,
25
+ dropout: float,
26
+ pos_enc_at_attn: bool,
27
+ pos_enc_at_cross_attn_keys: bool,
28
+ pos_enc_at_cross_attn_queries: bool,
29
+ self_attention: nn.Module,
30
+ ):
31
+ super().__init__()
32
+ self.d_model = d_model
33
+ self.dim_feedforward = dim_feedforward
34
+ self.dropout_value = dropout
35
+ self.self_attn = self_attention
36
+ self.cross_attn_image = cross_attention
37
+
38
+ # Implementation of Feedforward model
39
+ self.linear1 = nn.Linear(d_model, dim_feedforward)
40
+ self.dropout = nn.Dropout(dropout)
41
+ self.linear2 = nn.Linear(dim_feedforward, d_model)
42
+
43
+ self.norm1 = nn.LayerNorm(d_model)
44
+ self.norm2 = nn.LayerNorm(d_model)
45
+ self.norm3 = nn.LayerNorm(d_model)
46
+ self.dropout1 = nn.Dropout(dropout)
47
+ self.dropout2 = nn.Dropout(dropout)
48
+ self.dropout3 = nn.Dropout(dropout)
49
+
50
+ self.activation_str = activation
51
+ self.activation = get_activation_fn(activation)
52
+
53
+ # Where to add pos enc
54
+ self.pos_enc_at_attn = pos_enc_at_attn
55
+ self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries
56
+ self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys
57
+
58
+ def _forward_sa(self, tgt, query_pos):
59
+ # Self-Attention
60
+ tgt2 = self.norm1(tgt)
61
+ q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2
62
+ tgt2 = self.self_attn(q, k, v=tgt2)
63
+ tgt = tgt + self.dropout1(tgt2)
64
+ return tgt
65
+
66
+ def _forward_ca(self, tgt, memory, query_pos, pos, num_k_exclude_rope=0, object_frame_scores=None, object_ptr_scores=None):
67
+ kwds = {}
68
+ if num_k_exclude_rope > 0:
69
+ assert isinstance(self.cross_attn_image, RoPEAttention)
70
+ kwds = {"num_k_exclude_rope": num_k_exclude_rope}
71
+
72
+ # Cross-Attention
73
+ tgt2 = self.norm2(tgt)
74
+ if object_frame_scores is None:
75
+ key = memory + pos if self.pos_enc_at_cross_attn_keys else memory
76
+ else: # relative
77
+ key_original = memory + pos if self.pos_enc_at_cross_attn_keys else memory
78
+ num_frame, num_ptr = len(object_frame_scores), len(object_ptr_scores)
79
+ num_frame_ = int(num_frame*4096)
80
+ num_object = key_original.shape[0]
81
+ key_frame = key_original[:, :num_frame_].reshape(num_object, num_frame, 4096, -1)
82
+ key_ptr = key_original[:, num_frame_:].reshape(num_object, num_ptr, 4, -1)
83
+ scaling_low = 0.95
84
+ scaling_high = 1.05
85
+ if num_frame == 1:
86
+ key = key_original
87
+ else:
88
+ weight_frame = torch.stack(object_frame_scores, dim=1) # num_object, num_frame
89
+ weight_ptr = torch.stack(object_ptr_scores, dim=1) # num_object, num_ptr
90
+
91
+ standard_weight_frame = torch.linspace(scaling_low, scaling_high, num_frame).to(weight_frame) # num_frame
92
+ standard_weight_ptr = torch.linspace(scaling_low, scaling_high, num_ptr).to(weight_ptr) # num_ptr
93
+
94
+ new_weight_frame = torch.zeros_like(weight_frame)
95
+ new_weight_ptr = torch.zeros_like(weight_ptr)
96
+
97
+ new_weight_frame.scatter_(1, torch.argsort(weight_frame, dim=1), standard_weight_frame.unsqueeze(0).repeat([num_object, 1]))
98
+ new_weight_ptr.scatter_(1, torch.argsort(weight_ptr, dim=1), standard_weight_ptr.unsqueeze(0).repeat([num_object, 1]))
99
+
100
+ key_frame_scale = (new_weight_frame[:, :, None, None].to(key_frame.device) * key_frame)
101
+ key_ptr_scale = (new_weight_ptr[:, :, None, None].to(key_ptr.device) * key_ptr)
102
+ key = torch.cat([key_frame_scale.reshape(num_object, num_frame_, -1), key_ptr_scale.reshape(num_object, int(num_ptr*4), -1)], dim=1)
103
+ # key = memory + pos if self.pos_enc_at_cross_attn_keys else memory
104
+ tgt2 = self.cross_attn_image(
105
+ q=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2,
106
+ k=key,
107
+ v=memory,
108
+ **kwds,
109
+ )
110
+ tgt = tgt + self.dropout2(tgt2)
111
+ return tgt
112
+
113
+ def forward(
114
+ self,
115
+ tgt,
116
+ memory,
117
+ pos: Optional[Tensor] = None,
118
+ query_pos: Optional[Tensor] = None,
119
+ num_k_exclude_rope: int = 0,
120
+ object_frame_scores = None,
121
+ object_ptr_scores = None,
122
+ ) -> torch.Tensor:
123
+
124
+ # Self-Attn, Cross-Attn
125
+ tgt = self._forward_sa(tgt, query_pos)
126
+ tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope, object_frame_scores, object_ptr_scores)
127
+ # MLP
128
+ tgt2 = self.norm3(tgt)
129
+ tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
130
+ tgt = tgt + self.dropout3(tgt2)
131
+ return tgt
132
+
133
+
134
+ class MemoryAttention(nn.Module):
135
+ def __init__(
136
+ self,
137
+ d_model: int,
138
+ pos_enc_at_input: bool,
139
+ layer: nn.Module,
140
+ num_layers: int,
141
+ batch_first: bool = True, # Do layers expect batch first input?
142
+ ):
143
+ super().__init__()
144
+ self.d_model = d_model
145
+ self.layers = get_clones(layer, num_layers)
146
+ self.num_layers = num_layers
147
+ self.norm = nn.LayerNorm(d_model)
148
+ self.pos_enc_at_input = pos_enc_at_input
149
+ self.batch_first = batch_first
150
+
151
+ def forward(
152
+ self,
153
+ curr: torch.Tensor, # self-attention inputs
154
+ memory: torch.Tensor, # cross-attention inputs
155
+ curr_pos: Optional[Tensor] = None, # pos_enc for self-attention inputs
156
+ memory_pos: Optional[Tensor] = None, # pos_enc for cross-attention inputs
157
+ num_obj_ptr_tokens: int = 0, # number of object pointer *tokens*
158
+ object_frame_scores=None,
159
+ object_ptr_scores=None,
160
+ ):
161
+ if isinstance(curr, list):
162
+ assert isinstance(curr_pos, list)
163
+ assert len(curr) == len(curr_pos) == 1
164
+ curr, curr_pos = (
165
+ curr[0],
166
+ curr_pos[0],
167
+ )
168
+
169
+ assert (
170
+ curr.shape[1] == memory.shape[1]
171
+ ), "Batch size must be the same for curr and memory"
172
+
173
+ output = curr
174
+ if self.pos_enc_at_input and curr_pos is not None:
175
+ output = output + 0.1 * curr_pos
176
+
177
+ if self.batch_first:
178
+ # Convert to batch first
179
+ output = output.transpose(0, 1)
180
+ curr_pos = curr_pos.transpose(0, 1)
181
+ memory = memory.transpose(0, 1)
182
+ memory_pos = memory_pos.transpose(0, 1)
183
+
184
+ for layer in self.layers:
185
+ kwds = {}
186
+ if isinstance(layer.cross_attn_image, RoPEAttention):
187
+ kwds = {"num_k_exclude_rope": num_obj_ptr_tokens,
188
+ "object_frame_scores": object_frame_scores,
189
+ "object_ptr_scores":object_ptr_scores}
190
+
191
+ output = layer(
192
+ tgt=output,
193
+ memory=memory,
194
+ pos=memory_pos,
195
+ query_pos=curr_pos,
196
+ **kwds,
197
+ )
198
+ normed_output = self.norm(output)
199
+
200
+ if self.batch_first:
201
+ # Convert back to seq first
202
+ normed_output = normed_output.transpose(0, 1)
203
+ curr_pos = curr_pos.transpose(0, 1)
204
+
205
+ return normed_output
sam2/modeling/memory_encoder.py ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import math
8
+ from typing import Tuple
9
+
10
+ import torch
11
+ import torch.nn as nn
12
+ import torch.nn.functional as F
13
+
14
+ from sam2.modeling.sam2_utils import DropPath, get_clones, LayerNorm2d
15
+
16
+
17
+ class MaskDownSampler(nn.Module):
18
+ """
19
+ Progressively downsample a mask by total_stride, each time by stride.
20
+ Note that LayerNorm is applied per *token*, like in ViT.
21
+
22
+ With each downsample (by a factor stride**2), channel capacity increases by the same factor.
23
+ In the end, we linearly project to embed_dim channels.
24
+ """
25
+
26
+ def __init__(
27
+ self,
28
+ embed_dim=256,
29
+ kernel_size=4,
30
+ stride=4,
31
+ padding=0,
32
+ total_stride=16,
33
+ activation=nn.GELU,
34
+ ):
35
+ super().__init__()
36
+ num_layers = int(math.log2(total_stride) // math.log2(stride))
37
+ assert stride**num_layers == total_stride
38
+ self.encoder = nn.Sequential()
39
+ mask_in_chans, mask_out_chans = 1, 1
40
+ for _ in range(num_layers):
41
+ mask_out_chans = mask_in_chans * (stride**2)
42
+ self.encoder.append(
43
+ nn.Conv2d(
44
+ mask_in_chans,
45
+ mask_out_chans,
46
+ kernel_size=kernel_size,
47
+ stride=stride,
48
+ padding=padding,
49
+ )
50
+ )
51
+ self.encoder.append(LayerNorm2d(mask_out_chans))
52
+ self.encoder.append(activation())
53
+ mask_in_chans = mask_out_chans
54
+
55
+ self.encoder.append(nn.Conv2d(mask_out_chans, embed_dim, kernel_size=1))
56
+
57
+ def forward(self, x):
58
+ return self.encoder(x)
59
+
60
+
61
+ # Lightly adapted from ConvNext (https://github.com/facebookresearch/ConvNeXt)
62
+ class CXBlock(nn.Module):
63
+ r"""ConvNeXt Block. There are two equivalent implementations:
64
+ (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
65
+ (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
66
+ We use (2) as we find it slightly faster in PyTorch
67
+
68
+ Args:
69
+ dim (int): Number of input channels.
70
+ drop_path (float): Stochastic depth rate. Default: 0.0
71
+ layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
72
+ """
73
+
74
+ def __init__(
75
+ self,
76
+ dim,
77
+ kernel_size=7,
78
+ padding=3,
79
+ drop_path=0.0,
80
+ layer_scale_init_value=1e-6,
81
+ use_dwconv=True,
82
+ ):
83
+ super().__init__()
84
+ self.dwconv = nn.Conv2d(
85
+ dim,
86
+ dim,
87
+ kernel_size=kernel_size,
88
+ padding=padding,
89
+ groups=dim if use_dwconv else 1,
90
+ ) # depthwise conv
91
+ self.norm = LayerNorm2d(dim, eps=1e-6)
92
+ self.pwconv1 = nn.Linear(
93
+ dim, 4 * dim
94
+ ) # pointwise/1x1 convs, implemented with linear layers
95
+ self.act = nn.GELU()
96
+ self.pwconv2 = nn.Linear(4 * dim, dim)
97
+ self.gamma = (
98
+ nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
99
+ if layer_scale_init_value > 0
100
+ else None
101
+ )
102
+ self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
103
+
104
+ def forward(self, x):
105
+ input = x
106
+ x = self.dwconv(x)
107
+ x = self.norm(x)
108
+ x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
109
+ x = self.pwconv1(x)
110
+ x = self.act(x)
111
+ x = self.pwconv2(x)
112
+ if self.gamma is not None:
113
+ x = self.gamma * x
114
+ x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
115
+
116
+ x = input + self.drop_path(x)
117
+ return x
118
+
119
+
120
+ class Fuser(nn.Module):
121
+ def __init__(self, layer, num_layers, dim=None, input_projection=False):
122
+ super().__init__()
123
+ self.proj = nn.Identity()
124
+ self.layers = get_clones(layer, num_layers)
125
+
126
+ if input_projection:
127
+ assert dim is not None
128
+ self.proj = nn.Conv2d(dim, dim, kernel_size=1)
129
+
130
+ def forward(self, x):
131
+ # normally x: (N, C, H, W)
132
+ x = self.proj(x)
133
+ for layer in self.layers:
134
+ x = layer(x)
135
+ return x
136
+
137
+
138
+ class MemoryEncoder(nn.Module):
139
+ def __init__(
140
+ self,
141
+ out_dim,
142
+ mask_downsampler,
143
+ fuser,
144
+ position_encoding,
145
+ in_dim=256, # in_dim of pix_feats
146
+ ):
147
+ super().__init__()
148
+
149
+ self.mask_downsampler = mask_downsampler
150
+
151
+ self.pix_feat_proj = nn.Conv2d(in_dim, in_dim, kernel_size=1)
152
+ self.fuser = fuser
153
+ self.position_encoding = position_encoding
154
+ self.out_proj = nn.Identity()
155
+ if out_dim != in_dim:
156
+ self.out_proj = nn.Conv2d(in_dim, out_dim, kernel_size=1)
157
+
158
+ def forward(
159
+ self,
160
+ pix_feat: torch.Tensor,
161
+ masks: torch.Tensor,
162
+ skip_mask_sigmoid: bool = False,
163
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
164
+ ## Process masks
165
+ # sigmoid, so that less domain shift from gt masks which are bool
166
+ if not skip_mask_sigmoid:
167
+ masks = F.sigmoid(masks)
168
+ masks = self.mask_downsampler(masks)
169
+
170
+ ## Fuse pix_feats and downsampled masks
171
+ # in case the visual features are on CPU, cast them to CUDA
172
+ pix_feat = pix_feat.to(masks.device)
173
+
174
+ x = self.pix_feat_proj(pix_feat)
175
+ x = x + masks
176
+ x = self.fuser(x)
177
+ x = self.out_proj(x)
178
+
179
+ pos = self.position_encoding(x).to(x.dtype)
180
+
181
+ return {"vision_features": x, "vision_pos_enc": [pos]}
sam2/modeling/position_encoding.py ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import math
8
+ from typing import Any, Optional, Tuple
9
+
10
+ import numpy as np
11
+
12
+ import torch
13
+ from torch import nn
14
+
15
+
16
+ class PositionEmbeddingSine(nn.Module):
17
+ """
18
+ This is a more standard version of the position embedding, very similar to the one
19
+ used by the Attention Is All You Need paper, generalized to work on images.
20
+ """
21
+
22
+ def __init__(
23
+ self,
24
+ num_pos_feats,
25
+ temperature: int = 10000,
26
+ normalize: bool = True,
27
+ scale: Optional[float] = None,
28
+ ):
29
+ super().__init__()
30
+ assert num_pos_feats % 2 == 0, "Expecting even model width"
31
+ self.num_pos_feats = num_pos_feats // 2
32
+ self.temperature = temperature
33
+ self.normalize = normalize
34
+ if scale is not None and normalize is False:
35
+ raise ValueError("normalize should be True if scale is passed")
36
+ if scale is None:
37
+ scale = 2 * math.pi
38
+ self.scale = scale
39
+
40
+ self.cache = {}
41
+
42
+ def _encode_xy(self, x, y):
43
+ # The positions are expected to be normalized
44
+ assert len(x) == len(y) and x.ndim == y.ndim == 1
45
+ x_embed = x * self.scale
46
+ y_embed = y * self.scale
47
+
48
+ dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
49
+ dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
50
+
51
+ pos_x = x_embed[:, None] / dim_t
52
+ pos_y = y_embed[:, None] / dim_t
53
+ pos_x = torch.stack(
54
+ (pos_x[:, 0::2].sin(), pos_x[:, 1::2].cos()), dim=2
55
+ ).flatten(1)
56
+ pos_y = torch.stack(
57
+ (pos_y[:, 0::2].sin(), pos_y[:, 1::2].cos()), dim=2
58
+ ).flatten(1)
59
+ return pos_x, pos_y
60
+
61
+ @torch.no_grad()
62
+ def encode_boxes(self, x, y, w, h):
63
+ pos_x, pos_y = self._encode_xy(x, y)
64
+ pos = torch.cat((pos_y, pos_x, h[:, None], w[:, None]), dim=1)
65
+ return pos
66
+
67
+ encode = encode_boxes # Backwards compatibility
68
+
69
+ @torch.no_grad()
70
+ def encode_points(self, x, y, labels):
71
+ (bx, nx), (by, ny), (bl, nl) = x.shape, y.shape, labels.shape
72
+ assert bx == by and nx == ny and bx == bl and nx == nl
73
+ pos_x, pos_y = self._encode_xy(x.flatten(), y.flatten())
74
+ pos_x, pos_y = pos_x.reshape(bx, nx, -1), pos_y.reshape(by, ny, -1)
75
+ pos = torch.cat((pos_y, pos_x, labels[:, :, None]), dim=2)
76
+ return pos
77
+
78
+ @torch.no_grad()
79
+ def forward(self, x: torch.Tensor):
80
+ cache_key = (x.shape[-2], x.shape[-1])
81
+ if cache_key in self.cache:
82
+ return self.cache[cache_key][None].repeat(x.shape[0], 1, 1, 1)
83
+ y_embed = (
84
+ torch.arange(1, x.shape[-2] + 1, dtype=torch.float32, device=x.device)
85
+ .view(1, -1, 1)
86
+ .repeat(x.shape[0], 1, x.shape[-1])
87
+ )
88
+ x_embed = (
89
+ torch.arange(1, x.shape[-1] + 1, dtype=torch.float32, device=x.device)
90
+ .view(1, 1, -1)
91
+ .repeat(x.shape[0], x.shape[-2], 1)
92
+ )
93
+
94
+ if self.normalize:
95
+ eps = 1e-6
96
+ y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
97
+ x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
98
+
99
+ dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
100
+ dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
101
+
102
+ pos_x = x_embed[:, :, :, None] / dim_t
103
+ pos_y = y_embed[:, :, :, None] / dim_t
104
+ pos_x = torch.stack(
105
+ (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
106
+ ).flatten(3)
107
+ pos_y = torch.stack(
108
+ (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
109
+ ).flatten(3)
110
+ pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
111
+ self.cache[cache_key] = pos[0]
112
+ return pos
113
+
114
+
115
+ class PositionEmbeddingRandom(nn.Module):
116
+ """
117
+ Positional encoding using random spatial frequencies.
118
+ """
119
+
120
+ def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
121
+ super().__init__()
122
+ if scale is None or scale <= 0.0:
123
+ scale = 1.0
124
+ self.register_buffer(
125
+ "positional_encoding_gaussian_matrix",
126
+ scale * torch.randn((2, num_pos_feats)),
127
+ )
128
+
129
+ def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
130
+ """Positionally encode points that are normalized to [0,1]."""
131
+ # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
132
+ coords = 2 * coords - 1
133
+ coords = coords @ self.positional_encoding_gaussian_matrix
134
+ coords = 2 * np.pi * coords
135
+ # outputs d_1 x ... x d_n x C shape
136
+ return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
137
+
138
+ def forward(self, size: Tuple[int, int]) -> torch.Tensor:
139
+ """Generate positional encoding for a grid of the specified size."""
140
+ h, w = size
141
+ device: Any = self.positional_encoding_gaussian_matrix.device
142
+ grid = torch.ones((h, w), device=device, dtype=torch.float32)
143
+ y_embed = grid.cumsum(dim=0) - 0.5
144
+ x_embed = grid.cumsum(dim=1) - 0.5
145
+ y_embed = y_embed / h
146
+ x_embed = x_embed / w
147
+
148
+ pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
149
+ return pe.permute(2, 0, 1) # C x H x W
150
+
151
+ def forward_with_coords(
152
+ self, coords_input: torch.Tensor, image_size: Tuple[int, int]
153
+ ) -> torch.Tensor:
154
+ """Positionally encode points that are not normalized to [0,1]."""
155
+ coords = coords_input.clone()
156
+ coords[:, :, 0] = coords[:, :, 0] / image_size[1]
157
+ coords[:, :, 1] = coords[:, :, 1] / image_size[0]
158
+ return self._pe_encoding(coords.to(torch.float)) # B x N x C
159
+
160
+
161
+ # Rotary Positional Encoding, adapted from:
162
+ # 1. https://github.com/meta-llama/codellama/blob/main/llama/model.py
163
+ # 2. https://github.com/naver-ai/rope-vit
164
+ # 3. https://github.com/lucidrains/rotary-embedding-torch
165
+
166
+
167
+ def init_t_xy(end_x: int, end_y: int):
168
+ t = torch.arange(end_x * end_y, dtype=torch.float32)
169
+ t_x = (t % end_x).float()
170
+ t_y = torch.div(t, end_x, rounding_mode="floor").float()
171
+ return t_x, t_y
172
+
173
+
174
+ def compute_axial_cis(dim: int, end_x: int, end_y: int, theta: float = 10000.0):
175
+ freqs_x = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim))
176
+ freqs_y = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim))
177
+
178
+ t_x, t_y = init_t_xy(end_x, end_y)
179
+ freqs_x = torch.outer(t_x, freqs_x)
180
+ freqs_y = torch.outer(t_y, freqs_y)
181
+ freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x)
182
+ freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y)
183
+ return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1)
184
+
185
+
186
+ def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
187
+ ndim = x.ndim
188
+ assert 0 <= 1 < ndim
189
+ assert freqs_cis.shape == (x.shape[-2], x.shape[-1])
190
+ shape = [d if i >= ndim - 2 else 1 for i, d in enumerate(x.shape)]
191
+ return freqs_cis.view(*shape)
192
+
193
+
194
+ def apply_rotary_enc(
195
+ xq: torch.Tensor,
196
+ xk: torch.Tensor,
197
+ freqs_cis: torch.Tensor,
198
+ repeat_freqs_k: bool = False,
199
+ ):
200
+ xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
201
+ xk_ = (
202
+ torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
203
+ if xk.shape[-2] != 0
204
+ else None
205
+ )
206
+ freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
207
+ xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
208
+ if xk_ is None:
209
+ # no keys to rotate, due to dropout
210
+ return xq_out.type_as(xq).to(xq.device), xk
211
+ # repeat freqs along seq_len dim to match k seq_len
212
+ if repeat_freqs_k:
213
+ r = xk_.shape[-2] // xq_.shape[-2]
214
+ if freqs_cis.is_cuda:
215
+ freqs_cis = freqs_cis.repeat(*([1] * (freqs_cis.ndim - 2)), r, 1)
216
+ else:
217
+ # torch.repeat on complex numbers may not be supported on non-CUDA devices
218
+ # (freqs_cis has 4 dims and we repeat on dim 2) so we use expand + flatten
219
+ freqs_cis = freqs_cis.unsqueeze(2).expand(-1, -1, r, -1, -1).flatten(2, 3)
220
+ xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
221
+ return xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device)
sam2/modeling/sam/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
sam2/modeling/sam/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (171 Bytes). View file
 
sam2/modeling/sam/__pycache__/mask_decoder.cpython-310.pyc ADDED
Binary file (7.82 kB). View file
 
sam2/modeling/sam/__pycache__/prompt_encoder.cpython-310.pyc ADDED
Binary file (5.92 kB). View file
 
sam2/modeling/sam/__pycache__/transformer.cpython-310.pyc ADDED
Binary file (9.65 kB). View file
 
sam2/modeling/sam/mask_decoder.py ADDED
@@ -0,0 +1,300 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from typing import List, Optional, Tuple, Type
8
+
9
+ import torch
10
+ from torch import nn
11
+ import pdb
12
+ from fvcore.nn import FlopCountAnalysis
13
+ from sam2.modeling.sam2_utils import LayerNorm2d, MLP
14
+
15
+
16
+ class MaskDecoder(nn.Module):
17
+ def __init__(
18
+ self,
19
+ *,
20
+ transformer_dim: int,
21
+ transformer: nn.Module,
22
+ num_multimask_outputs: int = 3,
23
+ activation: Type[nn.Module] = nn.GELU,
24
+ iou_head_depth: int = 3,
25
+ iou_head_hidden_dim: int = 256,
26
+ use_high_res_features: bool = False,
27
+ iou_prediction_use_sigmoid=False,
28
+ dynamic_multimask_via_stability=False,
29
+ dynamic_multimask_stability_delta=0.05,
30
+ dynamic_multimask_stability_thresh=0.98,
31
+ pred_obj_scores: bool = False,
32
+ pred_obj_scores_mlp: bool = False,
33
+ use_multimask_token_for_obj_ptr: bool = False,
34
+ ) -> None:
35
+ """
36
+ Predicts masks given an image and prompt embeddings, using a
37
+ transformer architecture.
38
+
39
+ Arguments:
40
+ transformer_dim (int): the channel dimension of the transformer
41
+ transformer (nn.Module): the transformer used to predict masks
42
+ num_multimask_outputs (int): the number of masks to predict
43
+ when disambiguating masks
44
+ activation (nn.Module): the type of activation to use when
45
+ upscaling masks
46
+ iou_head_depth (int): the depth of the MLP used to predict
47
+ mask quality
48
+ iou_head_hidden_dim (int): the hidden dimension of the MLP
49
+ used to predict mask quality
50
+ """
51
+ super().__init__()
52
+ self.transformer_dim = transformer_dim
53
+ self.transformer = transformer
54
+
55
+ self.num_multimask_outputs = num_multimask_outputs
56
+
57
+ self.iou_token = nn.Embedding(1, transformer_dim)
58
+ self.num_mask_tokens = num_multimask_outputs + 1
59
+ self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
60
+
61
+ self.pred_obj_scores = pred_obj_scores
62
+ if self.pred_obj_scores:
63
+ self.obj_score_token = nn.Embedding(1, transformer_dim)
64
+ self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
65
+
66
+ self.output_upscaling = nn.Sequential(
67
+ nn.ConvTranspose2d(
68
+ transformer_dim, transformer_dim // 4, kernel_size=2, stride=2
69
+ ),
70
+ LayerNorm2d(transformer_dim // 4),
71
+ activation(),
72
+ nn.ConvTranspose2d(
73
+ transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2
74
+ ),
75
+ activation(),
76
+ )
77
+ self.use_high_res_features = use_high_res_features
78
+ if use_high_res_features:
79
+ self.conv_s0 = nn.Conv2d(
80
+ transformer_dim, transformer_dim // 8, kernel_size=1, stride=1
81
+ )
82
+ self.conv_s1 = nn.Conv2d(
83
+ transformer_dim, transformer_dim // 4, kernel_size=1, stride=1
84
+ )
85
+
86
+ self.output_hypernetworks_mlps = nn.ModuleList(
87
+ [
88
+ MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
89
+ for i in range(self.num_mask_tokens)
90
+ ]
91
+ )
92
+
93
+ self.iou_prediction_head = MLP(
94
+ transformer_dim,
95
+ iou_head_hidden_dim,
96
+ self.num_mask_tokens,
97
+ iou_head_depth,
98
+ sigmoid_output=iou_prediction_use_sigmoid,
99
+ )
100
+ if self.pred_obj_scores:
101
+ self.pred_obj_score_head = nn.Linear(transformer_dim, 1)
102
+ if pred_obj_scores_mlp:
103
+ self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3)
104
+
105
+ # When outputting a single mask, optionally we can dynamically fall back to the best
106
+ # multimask output token if the single mask output token gives low stability scores.
107
+ self.dynamic_multimask_via_stability = dynamic_multimask_via_stability
108
+ self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta
109
+ self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh
110
+
111
+
112
+
113
+ def forward(
114
+ self,
115
+ image_embeddings: torch.Tensor,
116
+ image_pe: torch.Tensor,
117
+ sparse_prompt_embeddings: torch.Tensor,
118
+ dense_prompt_embeddings: torch.Tensor,
119
+ multimask_output: bool,
120
+ repeat_image: bool,
121
+ high_res_features: Optional[List[torch.Tensor]] = None,
122
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
123
+ """
124
+ Predict masks given image and prompt embeddings.
125
+
126
+ Arguments:
127
+ image_embeddings (torch.Tensor): the embeddings from the image encoder
128
+ image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
129
+ sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
130
+ dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
131
+ multimask_output (bool): Whether to return multiple masks or a single
132
+ mask.
133
+
134
+ Returns:
135
+ torch.Tensor: batched predicted masks
136
+ torch.Tensor: batched predictions of mask quality
137
+ torch.Tensor: batched SAM token for mask output
138
+ """
139
+ masks, iou_pred, mask_tokens_out, object_score_logits = self.predict_masks(
140
+ image_embeddings=image_embeddings,
141
+ image_pe=image_pe,
142
+ sparse_prompt_embeddings=sparse_prompt_embeddings,
143
+ dense_prompt_embeddings=dense_prompt_embeddings,
144
+ repeat_image=repeat_image,
145
+ high_res_features=high_res_features,
146
+ )
147
+
148
+ # Select the correct mask or masks for output
149
+ if multimask_output:
150
+ masks = masks[:, 1:, :, :]
151
+ iou_pred = iou_pred[:, 1:]
152
+ elif self.dynamic_multimask_via_stability and not self.training:
153
+ masks, iou_pred = self._dynamic_multimask_via_stability(masks, iou_pred)
154
+ else:
155
+ masks = masks[:, 0:1, :, :]
156
+ iou_pred = iou_pred[:, 0:1]
157
+
158
+ if multimask_output and self.use_multimask_token_for_obj_ptr:
159
+ sam_tokens_out = mask_tokens_out[:, 1:] # [b, 3, c] shape
160
+ else:
161
+ # Take the mask output token. Here we *always* use the token for single mask output.
162
+ # At test time, even if we track after 1-click (and using multimask_output=True),
163
+ # we still take the single mask token here. The rationale is that we always track
164
+ # after multiple clicks during training, so the past tokens seen during training
165
+ # are always the single mask token (and we'll let it be the object-memory token).
166
+ sam_tokens_out = mask_tokens_out[:, 0:1] # [b, 1, c] shape
167
+
168
+ # Prepare output
169
+ return masks, iou_pred, sam_tokens_out, object_score_logits
170
+
171
+ def predict_masks(
172
+ self,
173
+ image_embeddings: torch.Tensor,
174
+ image_pe: torch.Tensor,
175
+ sparse_prompt_embeddings: torch.Tensor,
176
+ dense_prompt_embeddings: torch.Tensor,
177
+ repeat_image: bool,
178
+ high_res_features: Optional[List[torch.Tensor]] = None,
179
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
180
+ """Predicts masks. See 'forward' for more details."""
181
+ # Concatenate output tokens
182
+ s = 0
183
+ if self.pred_obj_scores:
184
+ output_tokens = torch.cat(
185
+ [
186
+ self.obj_score_token.weight,
187
+ self.iou_token.weight,
188
+ self.mask_tokens.weight,
189
+ ],
190
+ dim=0,
191
+ )
192
+ s = 1
193
+ else:
194
+ output_tokens = torch.cat(
195
+ [self.iou_token.weight, self.mask_tokens.weight], dim=0
196
+ )
197
+ output_tokens = output_tokens.unsqueeze(0).expand(
198
+ sparse_prompt_embeddings.size(0), -1, -1
199
+ )
200
+ tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
201
+
202
+ # Expand per-image data in batch direction to be per-mask
203
+ if repeat_image:
204
+ src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
205
+ else:
206
+ assert image_embeddings.shape[0] == tokens.shape[0]
207
+ src = image_embeddings
208
+ src = src + dense_prompt_embeddings
209
+ assert (
210
+ image_pe.size(0) == 1
211
+ ), "image_pe should have size 1 in batch dim (from `get_dense_pe()`)"
212
+ pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
213
+ b, c, h, w = src.shape
214
+
215
+
216
+
217
+ # Run the transformer
218
+ hs, src = self.transformer(src, pos_src, tokens)
219
+ iou_token_out = hs[:, s, :]
220
+ mask_tokens_out = hs[:, s + 1 : (s + 1 + self.num_mask_tokens), :]
221
+
222
+ # Upscale mask embeddings and predict masks using the mask tokens
223
+ src = src.transpose(1, 2).view(b, c, h, w)
224
+ if not self.use_high_res_features:
225
+ upscaled_embedding = self.output_upscaling(src)
226
+ else:
227
+ dc1, ln1, act1, dc2, act2 = self.output_upscaling
228
+ feat_s0, feat_s1 = high_res_features
229
+ upscaled_embedding = act1(ln1(dc1(src) + feat_s1))
230
+ upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0)
231
+
232
+ hyper_in_list: List[torch.Tensor] = []
233
+ for i in range(self.num_mask_tokens):
234
+ hyper_in_list.append(
235
+ self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])
236
+ )
237
+ hyper_in = torch.stack(hyper_in_list, dim=1)
238
+ b, c, h, w = upscaled_embedding.shape
239
+ masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
240
+
241
+ # Generate mask quality predictions
242
+ iou_pred = self.iou_prediction_head(iou_token_out)
243
+ if self.pred_obj_scores:
244
+ assert s == 1
245
+ object_score_logits = self.pred_obj_score_head(hs[:, 0, :])
246
+ else:
247
+ # Obj scores logits - default to 10.0, i.e. assuming the object is present, sigmoid(10)=1
248
+ object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1)
249
+
250
+ return masks, iou_pred, mask_tokens_out, object_score_logits
251
+
252
+ def _get_stability_scores(self, mask_logits):
253
+ """
254
+ Compute stability scores of the mask logits based on the IoU between upper and
255
+ lower thresholds.
256
+ """
257
+ mask_logits = mask_logits.flatten(-2)
258
+ stability_delta = self.dynamic_multimask_stability_delta
259
+ area_i = torch.sum(mask_logits > stability_delta, dim=-1).float()
260
+ area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float()
261
+ stability_scores = torch.where(area_u > 0, area_i / area_u, 1.0)
262
+ return stability_scores
263
+
264
+ def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores):
265
+ """
266
+ When outputting a single mask, if the stability score from the current single-mask
267
+ output (based on output token 0) falls below a threshold, we instead select from
268
+ multi-mask outputs (based on output token 1~3) the mask with the highest predicted
269
+ IoU score. This is intended to ensure a valid mask for both clicking and tracking.
270
+ """
271
+ # The best mask from multimask output tokens (1~3)
272
+ multimask_logits = all_mask_logits[:, 1:, :, :]
273
+ multimask_iou_scores = all_iou_scores[:, 1:]
274
+ best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1)
275
+ batch_inds = torch.arange(
276
+ multimask_iou_scores.size(0), device=all_iou_scores.device
277
+ )
278
+ best_multimask_logits = multimask_logits[batch_inds, best_scores_inds]
279
+ best_multimask_logits = best_multimask_logits.unsqueeze(1)
280
+ best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds]
281
+ best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1)
282
+
283
+ # The mask from singlemask output token 0 and its stability score
284
+ singlemask_logits = all_mask_logits[:, 0:1, :, :]
285
+ singlemask_iou_scores = all_iou_scores[:, 0:1]
286
+ stability_scores = self._get_stability_scores(singlemask_logits)
287
+ is_stable = stability_scores >= self.dynamic_multimask_stability_thresh
288
+
289
+ # Dynamically fall back to best multimask output upon low stability scores.
290
+ mask_logits_out = torch.where(
291
+ is_stable[..., None, None].expand_as(singlemask_logits),
292
+ singlemask_logits,
293
+ best_multimask_logits,
294
+ )
295
+ iou_scores_out = torch.where(
296
+ is_stable.expand_as(singlemask_iou_scores),
297
+ singlemask_iou_scores,
298
+ best_multimask_iou_scores,
299
+ )
300
+ return mask_logits_out, iou_scores_out
sam2/modeling/sam/prompt_encoder.py ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from typing import Optional, Tuple, Type
8
+
9
+ import torch
10
+ from torch import nn
11
+
12
+ from sam2.modeling.position_encoding import PositionEmbeddingRandom
13
+
14
+ from sam2.modeling.sam2_utils import LayerNorm2d
15
+
16
+
17
+ class PromptEncoder(nn.Module):
18
+ def __init__(
19
+ self,
20
+ embed_dim: int,
21
+ image_embedding_size: Tuple[int, int],
22
+ input_image_size: Tuple[int, int],
23
+ mask_in_chans: int,
24
+ activation: Type[nn.Module] = nn.GELU,
25
+ ) -> None:
26
+ """
27
+ Encodes prompts for input to SAM's mask decoder.
28
+
29
+ Arguments:
30
+ embed_dim (int): The prompts' embedding dimension
31
+ image_embedding_size (tuple(int, int)): The spatial size of the
32
+ image embedding, as (H, W).
33
+ input_image_size (int): The padded size of the image as input
34
+ to the image encoder, as (H, W).
35
+ mask_in_chans (int): The number of hidden channels used for
36
+ encoding input masks.
37
+ activation (nn.Module): The activation to use when encoding
38
+ input masks.
39
+ """
40
+ super().__init__()
41
+ self.embed_dim = embed_dim
42
+ self.input_image_size = input_image_size
43
+ self.image_embedding_size = image_embedding_size
44
+ self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
45
+
46
+ self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
47
+ point_embeddings = [
48
+ nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)
49
+ ]
50
+ self.point_embeddings = nn.ModuleList(point_embeddings)
51
+ self.not_a_point_embed = nn.Embedding(1, embed_dim)
52
+
53
+ self.mask_input_size = (
54
+ 4 * image_embedding_size[0],
55
+ 4 * image_embedding_size[1],
56
+ )
57
+ self.mask_downscaling = nn.Sequential(
58
+ nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
59
+ LayerNorm2d(mask_in_chans // 4),
60
+ activation(),
61
+ nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
62
+ LayerNorm2d(mask_in_chans),
63
+ activation(),
64
+ nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
65
+ )
66
+ self.no_mask_embed = nn.Embedding(1, embed_dim)
67
+
68
+ def get_dense_pe(self) -> torch.Tensor:
69
+ """
70
+ Returns the positional encoding used to encode point prompts,
71
+ applied to a dense set of points the shape of the image encoding.
72
+
73
+ Returns:
74
+ torch.Tensor: Positional encoding with shape
75
+ 1x(embed_dim)x(embedding_h)x(embedding_w)
76
+ """
77
+ return self.pe_layer(self.image_embedding_size).unsqueeze(0)
78
+
79
+ def _embed_points(
80
+ self,
81
+ points: torch.Tensor,
82
+ labels: torch.Tensor,
83
+ pad: bool,
84
+ ) -> torch.Tensor:
85
+ """Embeds point prompts."""
86
+ points = points + 0.5 # Shift to center of pixel
87
+ if pad:
88
+ padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
89
+ padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
90
+ points = torch.cat([points, padding_point], dim=1)
91
+ labels = torch.cat([labels, padding_label], dim=1)
92
+ point_embedding = self.pe_layer.forward_with_coords(
93
+ points, self.input_image_size
94
+ )
95
+ point_embedding[labels == -1] = 0.0
96
+ point_embedding[labels == -1] += self.not_a_point_embed.weight
97
+ point_embedding[labels == 0] += self.point_embeddings[0].weight
98
+ point_embedding[labels == 1] += self.point_embeddings[1].weight
99
+ point_embedding[labels == 2] += self.point_embeddings[2].weight
100
+ point_embedding[labels == 3] += self.point_embeddings[3].weight
101
+ return point_embedding
102
+
103
+ def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
104
+ """Embeds box prompts."""
105
+ boxes = boxes + 0.5 # Shift to center of pixel
106
+ coords = boxes.reshape(-1, 2, 2)
107
+ corner_embedding = self.pe_layer.forward_with_coords(
108
+ coords, self.input_image_size
109
+ )
110
+ corner_embedding[:, 0, :] += self.point_embeddings[2].weight
111
+ corner_embedding[:, 1, :] += self.point_embeddings[3].weight
112
+ return corner_embedding
113
+
114
+ def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
115
+ """Embeds mask inputs."""
116
+ mask_embedding = self.mask_downscaling(masks)
117
+ return mask_embedding
118
+
119
+ def _get_batch_size(
120
+ self,
121
+ points: Optional[Tuple[torch.Tensor, torch.Tensor]],
122
+ boxes: Optional[torch.Tensor],
123
+ masks: Optional[torch.Tensor],
124
+ ) -> int:
125
+ """
126
+ Gets the batch size of the output given the batch size of the input prompts.
127
+ """
128
+ if points is not None:
129
+ return points[0].shape[0]
130
+ elif boxes is not None:
131
+ return boxes.shape[0]
132
+ elif masks is not None:
133
+ return masks.shape[0]
134
+ else:
135
+ return 1
136
+
137
+ def _get_device(self) -> torch.device:
138
+ return self.point_embeddings[0].weight.device
139
+
140
+ def forward(
141
+ self,
142
+ points: Optional[Tuple[torch.Tensor, torch.Tensor]],
143
+ boxes: Optional[torch.Tensor],
144
+ masks: Optional[torch.Tensor],
145
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
146
+ """
147
+ Embeds different types of prompts, returning both sparse and dense
148
+ embeddings.
149
+
150
+ Arguments:
151
+ points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
152
+ and labels to embed.
153
+ boxes (torch.Tensor or none): boxes to embed
154
+ masks (torch.Tensor or none): masks to embed
155
+
156
+ Returns:
157
+ torch.Tensor: sparse embeddings for the points and boxes, with shape
158
+ BxNx(embed_dim), where N is determined by the number of input points
159
+ and boxes.
160
+ torch.Tensor: dense embeddings for the masks, in the shape
161
+ Bx(embed_dim)x(embed_H)x(embed_W)
162
+ """
163
+ bs = self._get_batch_size(points, boxes, masks)
164
+ sparse_embeddings = torch.empty(
165
+ (bs, 0, self.embed_dim), device=self._get_device()
166
+ )
167
+ if points is not None:
168
+ coords, labels = points
169
+ point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
170
+ sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
171
+ if boxes is not None:
172
+ box_embeddings = self._embed_boxes(boxes)
173
+ sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
174
+
175
+ if masks is not None:
176
+ dense_embeddings = self._embed_masks(masks)
177
+ else:
178
+ dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
179
+ bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
180
+ )
181
+
182
+ return sparse_embeddings, dense_embeddings
sam2/modeling/sam/transformer.py ADDED
@@ -0,0 +1,360 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import contextlib
8
+ import math
9
+ import warnings
10
+ from functools import partial
11
+ from typing import Tuple, Type
12
+
13
+ import torch
14
+ import torch.nn.functional as F
15
+ from torch import nn, Tensor
16
+
17
+ from sam2.modeling.position_encoding import apply_rotary_enc, compute_axial_cis
18
+ from sam2.modeling.sam2_utils import MLP
19
+ from sam2.utils.misc import get_sdpa_settings
20
+
21
+ warnings.simplefilter(action="ignore", category=FutureWarning)
22
+ # Check whether Flash Attention is available (and use it by default)
23
+ OLD_GPU, USE_FLASH_ATTN, MATH_KERNEL_ON = get_sdpa_settings()
24
+ # A fallback setting to allow all available kernels if Flash Attention fails
25
+ ALLOW_ALL_KERNELS = False
26
+
27
+
28
+ def sdp_kernel_context(dropout_p):
29
+ """
30
+ Get the context for the attention scaled dot-product kernel. We use Flash Attention
31
+ by default, but fall back to all available kernels if Flash Attention fails.
32
+ """
33
+ if ALLOW_ALL_KERNELS:
34
+ return contextlib.nullcontext()
35
+
36
+ return torch.backends.cuda.sdp_kernel(
37
+ enable_flash=USE_FLASH_ATTN,
38
+ # if Flash attention kernel is off, then math kernel needs to be enabled
39
+ enable_math=(OLD_GPU and dropout_p > 0.0) or MATH_KERNEL_ON,
40
+ enable_mem_efficient=OLD_GPU,
41
+ )
42
+
43
+
44
+ class TwoWayTransformer(nn.Module):
45
+ def __init__(
46
+ self,
47
+ depth: int,
48
+ embedding_dim: int,
49
+ num_heads: int,
50
+ mlp_dim: int,
51
+ activation: Type[nn.Module] = nn.ReLU,
52
+ attention_downsample_rate: int = 2,
53
+ ) -> None:
54
+ """
55
+ A transformer decoder that attends to an input image using
56
+ queries whose positional embedding is supplied.
57
+
58
+ Args:
59
+ depth (int): number of layers in the transformer
60
+ embedding_dim (int): the channel dimension for the input embeddings
61
+ num_heads (int): the number of heads for multihead attention. Must
62
+ divide embedding_dim
63
+ mlp_dim (int): the channel dimension internal to the MLP block
64
+ activation (nn.Module): the activation to use in the MLP block
65
+ """
66
+ super().__init__()
67
+ self.depth = depth
68
+ self.embedding_dim = embedding_dim
69
+ self.num_heads = num_heads
70
+ self.mlp_dim = mlp_dim
71
+ self.layers = nn.ModuleList()
72
+
73
+ for i in range(depth):
74
+ self.layers.append(
75
+ TwoWayAttentionBlock(
76
+ embedding_dim=embedding_dim,
77
+ num_heads=num_heads,
78
+ mlp_dim=mlp_dim,
79
+ activation=activation,
80
+ attention_downsample_rate=attention_downsample_rate,
81
+ skip_first_layer_pe=(i == 0),
82
+ )
83
+ )
84
+
85
+ self.final_attn_token_to_image = Attention(
86
+ embedding_dim, num_heads, downsample_rate=attention_downsample_rate
87
+ )
88
+ self.norm_final_attn = nn.LayerNorm(embedding_dim)
89
+
90
+ def forward(
91
+ self,
92
+ image_embedding: Tensor,
93
+ image_pe: Tensor,
94
+ point_embedding: Tensor,
95
+ ) -> Tuple[Tensor, Tensor]:
96
+ """
97
+ Args:
98
+ image_embedding (torch.Tensor): image to attend to. Should be shape
99
+ B x embedding_dim x h x w for any h and w.
100
+ image_pe (torch.Tensor): the positional encoding to add to the image. Must
101
+ have the same shape as image_embedding.
102
+ point_embedding (torch.Tensor): the embedding to add to the query points.
103
+ Must have shape B x N_points x embedding_dim for any N_points.
104
+
105
+ Returns:
106
+ torch.Tensor: the processed point_embedding
107
+ torch.Tensor: the processed image_embedding
108
+ """
109
+ # BxCxHxW -> BxHWxC == B x N_image_tokens x C
110
+ bs, c, h, w = image_embedding.shape
111
+ image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
112
+ image_pe = image_pe.flatten(2).permute(0, 2, 1)
113
+
114
+ # Prepare queries
115
+ queries = point_embedding
116
+ keys = image_embedding
117
+
118
+ # Apply transformer blocks and final layernorm
119
+ for layer in self.layers:
120
+ queries, keys = layer(
121
+ queries=queries,
122
+ keys=keys,
123
+ query_pe=point_embedding,
124
+ key_pe=image_pe,
125
+ )
126
+
127
+ # Apply the final attention layer from the points to the image
128
+ q = queries + point_embedding
129
+ k = keys + image_pe
130
+ attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
131
+ queries = queries + attn_out
132
+ queries = self.norm_final_attn(queries)
133
+
134
+ return queries, keys
135
+
136
+
137
+ class TwoWayAttentionBlock(nn.Module):
138
+ def __init__(
139
+ self,
140
+ embedding_dim: int,
141
+ num_heads: int,
142
+ mlp_dim: int = 2048,
143
+ activation: Type[nn.Module] = nn.ReLU,
144
+ attention_downsample_rate: int = 2,
145
+ skip_first_layer_pe: bool = False,
146
+ ) -> None:
147
+ """
148
+ A transformer block with four layers: (1) self-attention of sparse
149
+ inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
150
+ block on sparse inputs, and (4) cross attention of dense inputs to sparse
151
+ inputs.
152
+
153
+ Arguments:
154
+ embedding_dim (int): the channel dimension of the embeddings
155
+ num_heads (int): the number of heads in the attention layers
156
+ mlp_dim (int): the hidden dimension of the mlp block
157
+ activation (nn.Module): the activation of the mlp block
158
+ skip_first_layer_pe (bool): skip the PE on the first layer
159
+ """
160
+ super().__init__()
161
+ self.self_attn = Attention(embedding_dim, num_heads)
162
+ self.norm1 = nn.LayerNorm(embedding_dim)
163
+
164
+ self.cross_attn_token_to_image = Attention(
165
+ embedding_dim, num_heads, downsample_rate=attention_downsample_rate
166
+ )
167
+ self.norm2 = nn.LayerNorm(embedding_dim)
168
+
169
+ self.mlp = MLP(
170
+ embedding_dim, mlp_dim, embedding_dim, num_layers=2, activation=activation
171
+ )
172
+ self.norm3 = nn.LayerNorm(embedding_dim)
173
+
174
+ self.norm4 = nn.LayerNorm(embedding_dim)
175
+ self.cross_attn_image_to_token = Attention(
176
+ embedding_dim, num_heads, downsample_rate=attention_downsample_rate
177
+ )
178
+
179
+ self.skip_first_layer_pe = skip_first_layer_pe
180
+
181
+ def forward(
182
+ self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
183
+ ) -> Tuple[Tensor, Tensor]:
184
+ # Self attention block
185
+ if self.skip_first_layer_pe:
186
+ queries = self.self_attn(q=queries, k=queries, v=queries)
187
+ else:
188
+ q = queries + query_pe
189
+ attn_out = self.self_attn(q=q, k=q, v=queries)
190
+ queries = queries + attn_out
191
+ queries = self.norm1(queries)
192
+
193
+ # Cross attention block, tokens attending to image embedding
194
+ q = queries + query_pe
195
+ k = keys + key_pe
196
+ attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
197
+ queries = queries + attn_out
198
+ queries = self.norm2(queries)
199
+
200
+ # MLP block
201
+ mlp_out = self.mlp(queries)
202
+ queries = queries + mlp_out
203
+ queries = self.norm3(queries)
204
+
205
+ # Cross attention block, image embedding attending to tokens
206
+ q = queries + query_pe
207
+ k = keys + key_pe
208
+ attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
209
+ keys = keys + attn_out
210
+ keys = self.norm4(keys)
211
+
212
+ return queries, keys
213
+
214
+
215
+ class Attention(nn.Module):
216
+ """
217
+ An attention layer that allows for downscaling the size of the embedding
218
+ after projection to queries, keys, and values.
219
+ """
220
+
221
+ def __init__(
222
+ self,
223
+ embedding_dim: int,
224
+ num_heads: int,
225
+ downsample_rate: int = 1,
226
+ dropout: float = 0.0,
227
+ kv_in_dim: int = None,
228
+ ) -> None:
229
+ super().__init__()
230
+ self.embedding_dim = embedding_dim
231
+ self.kv_in_dim = kv_in_dim if kv_in_dim is not None else embedding_dim
232
+ self.internal_dim = embedding_dim // downsample_rate
233
+ self.num_heads = num_heads
234
+ assert (
235
+ self.internal_dim % num_heads == 0
236
+ ), "num_heads must divide embedding_dim."
237
+
238
+ self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
239
+ self.k_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
240
+ self.v_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
241
+ self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
242
+
243
+ self.dropout_p = dropout
244
+
245
+ def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
246
+ b, n, c = x.shape
247
+ x = x.reshape(b, n, num_heads, c // num_heads)
248
+ return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
249
+
250
+ def _recombine_heads(self, x: Tensor) -> Tensor:
251
+ b, n_heads, n_tokens, c_per_head = x.shape
252
+ x = x.transpose(1, 2)
253
+ return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
254
+
255
+ def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
256
+ # Input projections
257
+ q = self.q_proj(q)
258
+ k = self.k_proj(k)
259
+ v = self.v_proj(v)
260
+
261
+ # Separate into heads
262
+ q = self._separate_heads(q, self.num_heads)
263
+ k = self._separate_heads(k, self.num_heads)
264
+ v = self._separate_heads(v, self.num_heads)
265
+
266
+ dropout_p = self.dropout_p if self.training else 0.0
267
+ # Attention
268
+ try:
269
+ with sdp_kernel_context(dropout_p):
270
+ out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
271
+ except Exception as e:
272
+ # Fall back to all kernels if the Flash attention kernel fails
273
+ warnings.warn(
274
+ f"Flash Attention kernel failed due to: {e}\nFalling back to all available "
275
+ f"kernels for scaled_dot_product_attention (which may have a slower speed).",
276
+ category=UserWarning,
277
+ stacklevel=2,
278
+ )
279
+ global ALLOW_ALL_KERNELS
280
+ ALLOW_ALL_KERNELS = True
281
+ out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
282
+
283
+ out = self._recombine_heads(out)
284
+ out = self.out_proj(out)
285
+
286
+ return out
287
+
288
+
289
+ class RoPEAttention(Attention):
290
+ """Attention with rotary position encoding."""
291
+
292
+ def __init__(
293
+ self,
294
+ *args,
295
+ rope_theta=10000.0,
296
+ # whether to repeat q rope to match k length
297
+ # this is needed for cross-attention to memories
298
+ rope_k_repeat=False,
299
+ feat_sizes=(32, 32), # [w, h] for stride 16 feats at 512 resolution
300
+ **kwargs,
301
+ ):
302
+ super().__init__(*args, **kwargs)
303
+
304
+ self.compute_cis = partial(
305
+ compute_axial_cis, dim=self.internal_dim // self.num_heads, theta=rope_theta
306
+ )
307
+ freqs_cis = self.compute_cis(end_x=feat_sizes[0], end_y=feat_sizes[1])
308
+ self.freqs_cis = freqs_cis
309
+ self.rope_k_repeat = rope_k_repeat
310
+
311
+ def forward(
312
+ self, q: Tensor, k: Tensor, v: Tensor, num_k_exclude_rope: int = 0
313
+ ) -> Tensor:
314
+ # Input projections
315
+ q = self.q_proj(q)
316
+ k = self.k_proj(k)
317
+ v = self.v_proj(v)
318
+
319
+ # Separate into heads
320
+ q = self._separate_heads(q, self.num_heads)
321
+ k = self._separate_heads(k, self.num_heads)
322
+ v = self._separate_heads(v, self.num_heads)
323
+
324
+ # Apply rotary position encoding
325
+ w = h = math.sqrt(q.shape[-2])
326
+ self.freqs_cis = self.freqs_cis.to(q.device)
327
+ if self.freqs_cis.shape[0] != q.shape[-2]:
328
+ self.freqs_cis = self.compute_cis(end_x=w, end_y=h).to(q.device)
329
+ if q.shape[-2] != k.shape[-2]:
330
+ assert self.rope_k_repeat
331
+
332
+ num_k_rope = k.size(-2) - num_k_exclude_rope
333
+ q, k[:, :, :num_k_rope] = apply_rotary_enc(
334
+ q,
335
+ k[:, :, :num_k_rope],
336
+ freqs_cis=self.freqs_cis,
337
+ repeat_freqs_k=self.rope_k_repeat,
338
+ )
339
+
340
+ dropout_p = self.dropout_p if self.training else 0.0
341
+ # Attention
342
+ try:
343
+ with sdp_kernel_context(dropout_p):
344
+ out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
345
+ except Exception as e:
346
+ # Fall back to all kernels if the Flash attention kernel fails
347
+ warnings.warn(
348
+ f"Flash Attention kernel failed due to: {e}\nFalling back to all available "
349
+ f"kernels for scaled_dot_product_attention (which may have a slower speed).",
350
+ category=UserWarning,
351
+ stacklevel=2,
352
+ )
353
+ global ALLOW_ALL_KERNELS
354
+ ALLOW_ALL_KERNELS = True
355
+ out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
356
+
357
+ out = self._recombine_heads(out)
358
+ out = self.out_proj(out)
359
+
360
+ return out
sam2/modeling/sam2_base.py ADDED
@@ -0,0 +1,943 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import torch
8
+ import torch.distributed
9
+ import torch.nn.functional as F
10
+
11
+ from torch.nn.init import trunc_normal_
12
+
13
+ from sam2.modeling.sam.mask_decoder import MaskDecoder
14
+ from sam2.modeling.sam.prompt_encoder import PromptEncoder
15
+ from sam2.modeling.sam.transformer import TwoWayTransformer
16
+ from sam2.modeling.sam2_utils import get_1d_sine_pe, MLP, select_closest_cond_frames
17
+ import pdb
18
+ from fvcore.nn import FlopCountAnalysis
19
+ # a large negative value as a placeholder score for missing objects
20
+ NO_OBJ_SCORE = -1024.0
21
+
22
+
23
+ class SAM2Base(torch.nn.Module):
24
+ def __init__(
25
+ self,
26
+ image_encoder,
27
+ memory_attention,
28
+ memory_encoder,
29
+ num_maskmem=7, # default 1 input frame + 6 previous frames
30
+ image_size=512,
31
+ backbone_stride=16, # stride of the image backbone output
32
+ sigmoid_scale_for_mem_enc=1.0, # scale factor for mask sigmoid prob
33
+ sigmoid_bias_for_mem_enc=0.0, # bias factor for mask sigmoid prob
34
+ # During evaluation, whether to binarize the sigmoid mask logits on interacted frames with clicks
35
+ binarize_mask_from_pts_for_mem_enc=False,
36
+ use_mask_input_as_output_without_sam=False, # on frames with mask input, whether to directly output the input mask without using a SAM prompt encoder + mask decoder
37
+ # The maximum number of conditioning frames to participate in the memory attention (-1 means no limit; if there are more conditioning frames than this limit,
38
+ # we only cross-attend to the temporally closest `max_cond_frames_in_attn` conditioning frames in the encoder when tracking each frame). This gives the model
39
+ # a temporal locality when handling a large number of annotated frames (since closer frames should be more important) and also avoids GPU OOM.
40
+ max_cond_frames_in_attn=-1,
41
+ # on the first frame, whether to directly add the no-memory embedding to the image feature
42
+ # (instead of using the transformer encoder)
43
+ directly_add_no_mem_embed=False,
44
+ # whether to use high-resolution feature maps in the SAM mask decoder
45
+ use_high_res_features_in_sam=False,
46
+ # whether to output multiple (3) masks for the first click on initial conditioning frames
47
+ multimask_output_in_sam=False,
48
+ # the minimum and maximum number of clicks to use multimask_output_in_sam (only relevant when `multimask_output_in_sam=True`;
49
+ # default is 1 for both, meaning that only the first click gives multimask output; also note that a box counts as two points)
50
+ multimask_min_pt_num=1,
51
+ multimask_max_pt_num=1,
52
+ # whether to also use multimask output for tracking (not just for the first click on initial conditioning frames; only relevant when `multimask_output_in_sam=True`)
53
+ multimask_output_for_tracking=False,
54
+ # Whether to use multimask tokens for obj ptr; Only relevant when both
55
+ # use_obj_ptrs_in_encoder=True and multimask_output_for_tracking=True
56
+ use_multimask_token_for_obj_ptr: bool = False,
57
+ # whether to use sigmoid to restrict ious prediction to [0-1]
58
+ iou_prediction_use_sigmoid=False,
59
+ # The memory bank's temporal stride during evaluation (i.e. the `r` parameter in XMem and Cutie; XMem and Cutie use r=5).
60
+ # For r>1, the (self.num_maskmem - 1) non-conditioning memory frames consist of
61
+ # (self.num_maskmem - 2) nearest frames from every r-th frames, plus the last frame.
62
+ memory_temporal_stride_for_eval=1,
63
+ # whether to apply non-overlapping constraints on the object masks in the memory encoder during evaluation (to avoid/alleviate superposing masks)
64
+ non_overlap_masks_for_mem_enc=False,
65
+ # whether to cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
66
+ use_obj_ptrs_in_encoder=False,
67
+ # the maximum number of object pointers from other frames in encoder cross attention (only relevant when `use_obj_ptrs_in_encoder=True`)
68
+ max_obj_ptrs_in_encoder=16,
69
+ # whether to add temporal positional encoding to the object pointers in the encoder (only relevant when `use_obj_ptrs_in_encoder=True`)
70
+ add_tpos_enc_to_obj_ptrs=True,
71
+ # whether to add an extra linear projection layer for the temporal positional encoding in the object pointers to avoid potential interference
72
+ # with spatial positional encoding (only relevant when both `use_obj_ptrs_in_encoder=True` and `add_tpos_enc_to_obj_ptrs=True`)
73
+ proj_tpos_enc_in_obj_ptrs=False,
74
+ # whether to use signed distance (instead of unsigned absolute distance) in the temporal positional encoding in the object pointers
75
+ # (only relevant when both `use_obj_ptrs_in_encoder=True` and `add_tpos_enc_to_obj_ptrs=True`)
76
+ use_signed_tpos_enc_to_obj_ptrs=False,
77
+ # whether to only attend to object pointers in the past (before the current frame) in the encoder during evaluation
78
+ # (only relevant when `use_obj_ptrs_in_encoder=True`; this might avoid pointer information too far in the future to distract the initial tracking)
79
+ only_obj_ptrs_in_the_past_for_eval=False,
80
+ # Whether to predict if there is an object in the frame
81
+ pred_obj_scores: bool = False,
82
+ # Whether to use an MLP to predict object scores
83
+ pred_obj_scores_mlp: bool = False,
84
+ # Only relevant if pred_obj_scores=True and use_obj_ptrs_in_encoder=True;
85
+ # Whether to have a fixed no obj pointer when there is no object present
86
+ # or to use it as an additive embedding with obj_ptr produced by decoder
87
+ fixed_no_obj_ptr: bool = False,
88
+ # Soft no object, i.e. mix in no_obj_ptr softly,
89
+ # hope to make recovery easier if there is a mistake and mitigate accumulation of errors
90
+ soft_no_obj_ptr: bool = False,
91
+ use_mlp_for_obj_ptr_proj: bool = False,
92
+ # add no obj embedding to spatial frames
93
+ no_obj_embed_spatial: bool = False,
94
+ # extra arguments used to construct the SAM mask decoder; if not None, it should be a dict of kwargs to be passed into `MaskDecoder` class.
95
+ sam_mask_decoder_extra_args=None,
96
+ compile_image_encoder: bool = False,
97
+ ):
98
+ super().__init__()
99
+ # Part 1: the image backbone
100
+ self.image_encoder = image_encoder
101
+ # Use level 0, 1, 2 for high-res setting, or just level 2 for the default setting
102
+ self.use_high_res_features_in_sam = use_high_res_features_in_sam
103
+ self.num_feature_levels = 3 if use_high_res_features_in_sam else 1
104
+ self.use_obj_ptrs_in_encoder = use_obj_ptrs_in_encoder
105
+ self.max_obj_ptrs_in_encoder = max_obj_ptrs_in_encoder
106
+ if use_obj_ptrs_in_encoder:
107
+ # A conv layer to downsample the mask prompt to stride 4 (the same stride as
108
+ # low-res SAM mask logits) and to change its scales from 0~1 to SAM logit scale,
109
+ # so that it can be fed into the SAM mask decoder to generate a pointer.
110
+ self.mask_downsample = torch.nn.Conv2d(1, 1, kernel_size=4, stride=4)
111
+ self.add_tpos_enc_to_obj_ptrs = add_tpos_enc_to_obj_ptrs
112
+ if proj_tpos_enc_in_obj_ptrs:
113
+ assert add_tpos_enc_to_obj_ptrs # these options need to be used together
114
+ self.proj_tpos_enc_in_obj_ptrs = proj_tpos_enc_in_obj_ptrs
115
+ self.use_signed_tpos_enc_to_obj_ptrs = use_signed_tpos_enc_to_obj_ptrs
116
+ self.only_obj_ptrs_in_the_past_for_eval = only_obj_ptrs_in_the_past_for_eval
117
+
118
+ # Part 2: memory attention to condition current frame's visual features
119
+ # with memories (and obj ptrs) from past frames
120
+ self.memory_attention = memory_attention
121
+ self.hidden_dim = image_encoder.neck.d_model
122
+
123
+ # Part 3: memory encoder for the previous frame's outputs
124
+ self.memory_encoder = memory_encoder
125
+ self.mem_dim = self.hidden_dim
126
+ if hasattr(self.memory_encoder, "out_proj") and hasattr(
127
+ self.memory_encoder.out_proj, "weight"
128
+ ):
129
+ # if there is compression of memories along channel dim
130
+ self.mem_dim = self.memory_encoder.out_proj.weight.shape[0]
131
+ self.num_maskmem = num_maskmem # Number of memories accessible
132
+ # Temporal encoding of the memories
133
+ self.maskmem_tpos_enc = torch.nn.Parameter(
134
+ torch.zeros(num_maskmem, 1, 1, self.mem_dim)
135
+ )
136
+ trunc_normal_(self.maskmem_tpos_enc, std=0.02)
137
+ # a single token to indicate no memory embedding from previous frames
138
+ self.no_mem_embed = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
139
+ self.no_mem_pos_enc = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
140
+ trunc_normal_(self.no_mem_embed, std=0.02)
141
+ trunc_normal_(self.no_mem_pos_enc, std=0.02)
142
+ self.directly_add_no_mem_embed = directly_add_no_mem_embed
143
+ # Apply sigmoid to the output raw mask logits (to turn them from
144
+ # range (-inf, +inf) to range (0, 1)) before feeding them into the memory encoder
145
+ self.sigmoid_scale_for_mem_enc = sigmoid_scale_for_mem_enc
146
+ self.sigmoid_bias_for_mem_enc = sigmoid_bias_for_mem_enc
147
+ self.binarize_mask_from_pts_for_mem_enc = binarize_mask_from_pts_for_mem_enc
148
+ self.non_overlap_masks_for_mem_enc = non_overlap_masks_for_mem_enc
149
+ self.memory_temporal_stride_for_eval = memory_temporal_stride_for_eval
150
+ # On frames with mask input, whether to directly output the input mask without
151
+ # using a SAM prompt encoder + mask decoder
152
+ self.use_mask_input_as_output_without_sam = use_mask_input_as_output_without_sam
153
+ self.multimask_output_in_sam = multimask_output_in_sam
154
+ self.multimask_min_pt_num = multimask_min_pt_num
155
+ self.multimask_max_pt_num = multimask_max_pt_num
156
+ self.multimask_output_for_tracking = multimask_output_for_tracking
157
+ self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
158
+ self.iou_prediction_use_sigmoid = iou_prediction_use_sigmoid
159
+
160
+ # Part 4: SAM-style prompt encoder (for both mask and point inputs)
161
+ # and SAM-style mask decoder for the final mask output
162
+ self.image_size = image_size
163
+ self.backbone_stride = backbone_stride
164
+ self.sam_mask_decoder_extra_args = sam_mask_decoder_extra_args
165
+ self.pred_obj_scores = pred_obj_scores
166
+ self.pred_obj_scores_mlp = pred_obj_scores_mlp
167
+ self.fixed_no_obj_ptr = fixed_no_obj_ptr
168
+ self.soft_no_obj_ptr = soft_no_obj_ptr
169
+ if self.fixed_no_obj_ptr:
170
+ assert self.pred_obj_scores
171
+ assert self.use_obj_ptrs_in_encoder
172
+ if self.pred_obj_scores and self.use_obj_ptrs_in_encoder:
173
+ self.no_obj_ptr = torch.nn.Parameter(torch.zeros(1, self.hidden_dim))
174
+ trunc_normal_(self.no_obj_ptr, std=0.02)
175
+ self.use_mlp_for_obj_ptr_proj = use_mlp_for_obj_ptr_proj
176
+ self.no_obj_embed_spatial = None
177
+ if no_obj_embed_spatial:
178
+ self.no_obj_embed_spatial = torch.nn.Parameter(torch.zeros(1, self.mem_dim))
179
+ trunc_normal_(self.no_obj_embed_spatial, std=0.02)
180
+
181
+ self._build_sam_heads()
182
+ self.max_cond_frames_in_attn = max_cond_frames_in_attn
183
+
184
+ # Model compilation
185
+ if compile_image_encoder:
186
+ # Compile the forward function (not the full module) to allow loading checkpoints.
187
+ print(
188
+ "Image encoder compilation is enabled. First forward pass will be slow."
189
+ )
190
+ self.image_encoder.forward = torch.compile(
191
+ self.image_encoder.forward,
192
+ mode="max-autotune",
193
+ fullgraph=True,
194
+ dynamic=False,
195
+ )
196
+
197
+ @property
198
+ def device(self):
199
+ return next(self.parameters()).device
200
+
201
+ def forward(self, *args, **kwargs):
202
+ raise NotImplementedError(
203
+ "Please use the corresponding methods in SAM2VideoPredictor for inference or SAM2Train for training/fine-tuning"
204
+ "See notebooks/video_predictor_example.ipynb for an inference example."
205
+ )
206
+
207
+ def _build_sam_heads(self):
208
+ """Build SAM-style prompt encoder and mask decoder."""
209
+ self.sam_prompt_embed_dim = self.hidden_dim
210
+ self.sam_image_embedding_size = self.image_size // self.backbone_stride
211
+
212
+ # build PromptEncoder and MaskDecoder from SAM
213
+ # (their hyperparameters like `mask_in_chans=16` are from SAM code)
214
+ self.sam_prompt_encoder = PromptEncoder(
215
+ embed_dim=self.sam_prompt_embed_dim,
216
+ image_embedding_size=(
217
+ self.sam_image_embedding_size,
218
+ self.sam_image_embedding_size,
219
+ ),
220
+ input_image_size=(self.image_size, self.image_size),
221
+ mask_in_chans=16,
222
+ )
223
+ self.sam_mask_decoder = MaskDecoder(
224
+ num_multimask_outputs=3,
225
+ transformer=TwoWayTransformer(
226
+ depth=2,
227
+ embedding_dim=self.sam_prompt_embed_dim,
228
+ mlp_dim=2048,
229
+ num_heads=8,
230
+ ),
231
+ transformer_dim=self.sam_prompt_embed_dim,
232
+ iou_head_depth=3,
233
+ iou_head_hidden_dim=256,
234
+ use_high_res_features=self.use_high_res_features_in_sam,
235
+ iou_prediction_use_sigmoid=self.iou_prediction_use_sigmoid,
236
+ pred_obj_scores=self.pred_obj_scores,
237
+ pred_obj_scores_mlp=self.pred_obj_scores_mlp,
238
+ use_multimask_token_for_obj_ptr=self.use_multimask_token_for_obj_ptr,
239
+ **(self.sam_mask_decoder_extra_args or {}),
240
+ )
241
+ if self.use_obj_ptrs_in_encoder:
242
+ # a linear projection on SAM output tokens to turn them into object pointers
243
+ self.obj_ptr_proj = torch.nn.Linear(self.hidden_dim, self.hidden_dim)
244
+ if self.use_mlp_for_obj_ptr_proj:
245
+ self.obj_ptr_proj = MLP(
246
+ self.hidden_dim, self.hidden_dim, self.hidden_dim, 3
247
+ )
248
+ else:
249
+ self.obj_ptr_proj = torch.nn.Identity()
250
+ if self.proj_tpos_enc_in_obj_ptrs:
251
+ # a linear projection on temporal positional encoding in object pointers to
252
+ # avoid potential interference with spatial positional encoding
253
+ self.obj_ptr_tpos_proj = torch.nn.Linear(self.hidden_dim, self.mem_dim)
254
+ else:
255
+ self.obj_ptr_tpos_proj = torch.nn.Identity()
256
+
257
+ def _forward_sam_heads(
258
+ self,
259
+ backbone_features,
260
+ point_inputs=None,
261
+ mask_inputs=None,
262
+ high_res_features=None,
263
+ multimask_output=False,
264
+ ):
265
+ """
266
+ Forward SAM prompt encoders and mask heads.
267
+
268
+ Inputs:
269
+ - backbone_features: image features of [B, C, H, W] shape
270
+ - point_inputs: a dictionary with "point_coords" and "point_labels", where
271
+ 1) "point_coords" has [B, P, 2] shape and float32 dtype and contains the
272
+ absolute pixel-unit coordinate in (x, y) format of the P input points
273
+ 2) "point_labels" has shape [B, P] and int32 dtype, where 1 means
274
+ positive clicks, 0 means negative clicks, and -1 means padding
275
+ - mask_inputs: a mask of [B, 1, H*16, W*16] shape, float or bool, with the
276
+ same spatial size as the image.
277
+ - high_res_features: either 1) None or 2) or a list of length 2 containing
278
+ two feature maps of [B, C, 4*H, 4*W] and [B, C, 2*H, 2*W] shapes respectively,
279
+ which will be used as high-resolution feature maps for SAM decoder.
280
+ - multimask_output: if it's True, we output 3 candidate masks and their 3
281
+ corresponding IoU estimates, and if it's False, we output only 1 mask and
282
+ its corresponding IoU estimate.
283
+
284
+ Outputs:
285
+ - low_res_multimasks: [B, M, H*4, W*4] shape (where M = 3 if
286
+ `multimask_output=True` and M = 1 if `multimask_output=False`), the SAM
287
+ output mask logits (before sigmoid) for the low-resolution masks, with 4x
288
+ the resolution (1/4 stride) of the input backbone_features.
289
+ - high_res_multimasks: [B, M, H*16, W*16] shape (where M = 3
290
+ if `multimask_output=True` and M = 1 if `multimask_output=False`),
291
+ upsampled from the low-resolution masks, with shape size as the image
292
+ (stride is 1 pixel).
293
+ - ious, [B, M] shape, where (where M = 3 if `multimask_output=True` and M = 1
294
+ if `multimask_output=False`), the estimated IoU of each output mask.
295
+ - low_res_masks: [B, 1, H*4, W*4] shape, the best mask in `low_res_multimasks`.
296
+ If `multimask_output=True`, it's the mask with the highest IoU estimate.
297
+ If `multimask_output=False`, it's the same as `low_res_multimasks`.
298
+ - high_res_masks: [B, 1, H*16, W*16] shape, the best mask in `high_res_multimasks`.
299
+ If `multimask_output=True`, it's the mask with the highest IoU estimate.
300
+ If `multimask_output=False`, it's the same as `high_res_multimasks`.
301
+ - obj_ptr: [B, C] shape, the object pointer vector for the output mask, extracted
302
+ based on the output token from the SAM mask decoder.
303
+ """
304
+ B = backbone_features.size(0)
305
+ device = backbone_features.device
306
+ assert backbone_features.size(1) == self.sam_prompt_embed_dim
307
+ assert backbone_features.size(2) == self.sam_image_embedding_size
308
+ assert backbone_features.size(3) == self.sam_image_embedding_size
309
+
310
+ # a) Handle point prompts
311
+ if point_inputs is not None:
312
+ sam_point_coords = point_inputs["point_coords"]
313
+ sam_point_labels = point_inputs["point_labels"]
314
+ assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B
315
+ else:
316
+ # If no points are provide, pad with an empty point (with label -1)
317
+ sam_point_coords = torch.zeros(B, 1, 2, device=device)
318
+ sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device)
319
+
320
+ # b) Handle mask prompts
321
+ if mask_inputs is not None:
322
+ # If mask_inputs is provided, downsize it into low-res mask input if needed
323
+ # and feed it as a dense mask prompt into the SAM mask encoder
324
+ assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1)
325
+ if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size:
326
+ sam_mask_prompt = F.interpolate(
327
+ mask_inputs.float(),
328
+ size=self.sam_prompt_encoder.mask_input_size,
329
+ align_corners=False,
330
+ mode="bilinear",
331
+ antialias=True, # use antialias for downsampling
332
+ )
333
+ else:
334
+ sam_mask_prompt = mask_inputs
335
+ else:
336
+ # Otherwise, simply feed None (and SAM's prompt encoder will add
337
+ # a learned `no_mask_embed` to indicate no mask input in this case).
338
+ sam_mask_prompt = None
339
+
340
+ sparse_embeddings, dense_embeddings = self.sam_prompt_encoder(
341
+ points=(sam_point_coords, sam_point_labels),
342
+ boxes=None,
343
+ masks=sam_mask_prompt,
344
+ )
345
+
346
+
347
+
348
+ (
349
+ low_res_multimasks,
350
+ ious,
351
+ sam_output_tokens,
352
+ object_score_logits,
353
+ ) = self.sam_mask_decoder(
354
+ image_embeddings=backbone_features,
355
+ image_pe=self.sam_prompt_encoder.get_dense_pe(),
356
+ sparse_prompt_embeddings=sparse_embeddings,
357
+ dense_prompt_embeddings=dense_embeddings,
358
+ multimask_output=multimask_output,
359
+ repeat_image=False, # the image is already batched
360
+ high_res_features=high_res_features,
361
+ )
362
+ if self.pred_obj_scores:
363
+ is_obj_appearing = object_score_logits > 0
364
+
365
+ # Mask used for spatial memories is always a *hard* choice between obj and no obj,
366
+ # consistent with the actual mask prediction
367
+ low_res_multimasks = torch.where(
368
+ is_obj_appearing[:, None, None],
369
+ low_res_multimasks,
370
+ NO_OBJ_SCORE,
371
+ )
372
+
373
+ # convert masks from possibly bfloat16 (or float16) to float32
374
+ # (older PyTorch versions before 2.1 don't support `interpolate` on bf16)
375
+ low_res_multimasks = low_res_multimasks.float()
376
+ high_res_multimasks = F.interpolate(
377
+ low_res_multimasks,
378
+ size=(self.image_size, self.image_size),
379
+ mode="bilinear",
380
+ align_corners=False,
381
+ )
382
+
383
+ sam_output_token = sam_output_tokens[:, 0]
384
+ if multimask_output:
385
+ # take the best mask prediction (with the highest IoU estimation)
386
+ best_iou_inds = torch.argmax(ious, dim=-1)
387
+ batch_inds = torch.arange(B, device=device)
388
+ low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
389
+ high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
390
+ if sam_output_tokens.size(1) > 1:
391
+ sam_output_token = sam_output_tokens[batch_inds, best_iou_inds]
392
+ else:
393
+ low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks
394
+
395
+ # Extract object pointer from the SAM output token (with occlusion handling)
396
+ obj_ptr = self.obj_ptr_proj(sam_output_token)
397
+ if self.pred_obj_scores:
398
+ # Allow *soft* no obj ptr, unlike for masks
399
+ if self.soft_no_obj_ptr:
400
+ lambda_is_obj_appearing = object_score_logits.sigmoid()
401
+ else:
402
+ lambda_is_obj_appearing = is_obj_appearing.float()
403
+
404
+ if self.fixed_no_obj_ptr:
405
+ obj_ptr = lambda_is_obj_appearing * obj_ptr
406
+ obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
407
+
408
+
409
+ #######SAM2Long########
410
+ obj_ptrs = self.obj_ptr_proj(sam_output_tokens)
411
+ lambda_is_obj_appearing = is_obj_appearing.float()[:, None]
412
+ obj_ptrs = lambda_is_obj_appearing * obj_ptrs
413
+ obj_ptrs = obj_ptrs + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
414
+
415
+
416
+ return (
417
+ low_res_multimasks,
418
+ high_res_multimasks,
419
+ ious,
420
+ low_res_masks,
421
+ high_res_masks,
422
+ obj_ptr,
423
+ object_score_logits,
424
+ obj_ptrs,
425
+ )
426
+
427
+ def _use_mask_as_output(self, backbone_features, high_res_features, mask_inputs):
428
+ """
429
+ Directly turn binary `mask_inputs` into a output mask logits without using SAM.
430
+ (same input and output shapes as in _forward_sam_heads above).
431
+ """
432
+ # Use -10/+10 as logits for neg/pos pixels (very close to 0/1 in prob after sigmoid).
433
+ out_scale, out_bias = 20.0, -10.0 # sigmoid(-10.0)=4.5398e-05
434
+ mask_inputs_float = mask_inputs.float()
435
+ high_res_masks = mask_inputs_float * out_scale + out_bias
436
+ low_res_masks = F.interpolate(
437
+ high_res_masks,
438
+ size=(high_res_masks.size(-2) // 4, high_res_masks.size(-1) // 4),
439
+ align_corners=False,
440
+ mode="bilinear",
441
+ antialias=True, # use antialias for downsampling
442
+ )
443
+ # a dummy IoU prediction of all 1's under mask input
444
+ ious = mask_inputs.new_ones(mask_inputs.size(0), 1).float()
445
+ if not self.use_obj_ptrs_in_encoder:
446
+ # all zeros as a dummy object pointer (of shape [B, C])
447
+ obj_ptr = torch.zeros(
448
+ mask_inputs.size(0), self.hidden_dim, device=mask_inputs.device
449
+ )
450
+ else:
451
+ # produce an object pointer using the SAM decoder from the mask input
452
+ _, _, _, _, _, obj_ptr, _, _ = self._forward_sam_heads(
453
+ backbone_features=backbone_features,
454
+ mask_inputs=self.mask_downsample(mask_inputs_float),
455
+ high_res_features=high_res_features,
456
+ )
457
+ # In this method, we are treating mask_input as output, e.g. using it directly to create spatial mem;
458
+ # Below, we follow the same design axiom to use mask_input to decide if obj appears or not instead of relying
459
+ # on the object_scores from the SAM decoder.
460
+ is_obj_appearing = torch.any(mask_inputs.flatten(1).float() > 0.0, dim=1)
461
+ is_obj_appearing = is_obj_appearing[..., None]
462
+ lambda_is_obj_appearing = is_obj_appearing.float()
463
+ object_score_logits = out_scale * lambda_is_obj_appearing + out_bias
464
+ if self.pred_obj_scores:
465
+ if self.fixed_no_obj_ptr:
466
+ obj_ptr = lambda_is_obj_appearing * obj_ptr
467
+ obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
468
+
469
+ return (
470
+ low_res_masks,
471
+ high_res_masks,
472
+ ious,
473
+ low_res_masks,
474
+ high_res_masks,
475
+ obj_ptr,
476
+ object_score_logits,
477
+ None,
478
+ )
479
+
480
+ def forward_image(self, img_batch: torch.Tensor):
481
+ """Get the image feature on the input batch."""
482
+ backbone_out = self.image_encoder(img_batch)
483
+ if self.use_high_res_features_in_sam:
484
+ # precompute projected level 0 and level 1 features in SAM decoder
485
+ # to avoid running it again on every SAM click
486
+ backbone_out["backbone_fpn"][0] = self.sam_mask_decoder.conv_s0(
487
+ backbone_out["backbone_fpn"][0]
488
+ )
489
+ backbone_out["backbone_fpn"][1] = self.sam_mask_decoder.conv_s1(
490
+ backbone_out["backbone_fpn"][1]
491
+ )
492
+ return backbone_out
493
+
494
+ def _prepare_backbone_features(self, backbone_out):
495
+ """Prepare and flatten visual features."""
496
+ backbone_out = backbone_out.copy()
497
+ assert len(backbone_out["backbone_fpn"]) == len(backbone_out["vision_pos_enc"])
498
+ assert len(backbone_out["backbone_fpn"]) >= self.num_feature_levels
499
+
500
+ feature_maps = backbone_out["backbone_fpn"][-self.num_feature_levels :]
501
+ vision_pos_embeds = backbone_out["vision_pos_enc"][-self.num_feature_levels :]
502
+
503
+ feat_sizes = [(x.shape[-2], x.shape[-1]) for x in vision_pos_embeds]
504
+ # flatten NxCxHxW to HWxNxC
505
+ vision_feats = [x.flatten(2).permute(2, 0, 1) for x in feature_maps]
506
+ vision_pos_embeds = [x.flatten(2).permute(2, 0, 1) for x in vision_pos_embeds]
507
+
508
+ return backbone_out, vision_feats, vision_pos_embeds, feat_sizes
509
+
510
+ def _prepare_memory_conditioned_features(
511
+ self,
512
+ frame_idx,
513
+ is_init_cond_frame,
514
+ current_vision_feats,
515
+ current_vision_pos_embeds,
516
+ feat_sizes,
517
+ output_dict,
518
+ num_frames,
519
+ track_in_reverse=False, # tracking in reverse time order (for demo usage)
520
+ mem_pick_index=0,
521
+ start_frame_idx=0,
522
+ iou_thre=0.1,
523
+ ):
524
+ """Fuse the current frame's visual feature map with previous memory."""
525
+ B = current_vision_feats[-1].size(1) # batch size on this frame
526
+ C = self.hidden_dim
527
+ H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size
528
+ device = current_vision_feats[-1].device
529
+ # The case of `self.num_maskmem == 0` below is primarily used for reproducing SAM on images.
530
+ # In this case, we skip the fusion with any memory.
531
+ if self.num_maskmem == 0: # Disable memory and skip fusion
532
+ pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
533
+ return pix_feat
534
+
535
+ num_obj_ptr_tokens = 0
536
+ tpos_sign_mul = -1 if track_in_reverse else 1
537
+ # Step 1: condition the visual features of the current frame on previous memories
538
+ if not is_init_cond_frame:
539
+ # Retrieve the memories encoded with the maskmem backbone
540
+ to_cat_memory, to_cat_memory_pos_embed = [], []
541
+ # Add conditioning frames's output first (all cond frames have t_pos=0 for
542
+ # when getting temporal positional embedding below)
543
+ assert len(output_dict["cond_frame_outputs"]) > 0
544
+ # Select a maximum number of temporally closest cond frames for cross attention
545
+ cond_outputs = output_dict["cond_frame_outputs"]
546
+ selected_cond_outputs, unselected_cond_outputs = select_closest_cond_frames(
547
+ frame_idx, cond_outputs, self.max_cond_frames_in_attn
548
+ )
549
+ t_pos_and_prevs = [(0, out) for out in selected_cond_outputs.values()]
550
+ # Add last (self.num_maskmem - 1) frames before current frame for non-conditioning memory
551
+ # the earliest one has t_pos=1 and the latest one has t_pos=self.num_maskmem-1
552
+ # We also allow taking the memory frame non-consecutively (with stride>1), in which case
553
+ # we take (self.num_maskmem - 2) frames among every stride-th frames plus the last frame.
554
+ stride = 1 if self.training else self.memory_temporal_stride_for_eval
555
+
556
+ max_obj_ptrs_in_encoder = min(num_frames, self.max_obj_ptrs_in_encoder)
557
+ num_object = int(cond_outputs[start_frame_idx]['obj_ptr'].shape[0]) ##always one
558
+
559
+
560
+ if frame_idx <= start_frame_idx+1 or mem_pick_index==0:
561
+ valid_indices = []
562
+ else:
563
+ valid_indices = []
564
+ for i in range(frame_idx - 1, start_frame_idx, -1):
565
+ object_score = output_dict["non_cond_frame_outputs"][i]['object_score_logits'][...,mem_pick_index[i]]
566
+ iou = output_dict["non_cond_frame_outputs"][i]['ious'][...,mem_pick_index[i]]
567
+ # print("threshold", iou_thre)
568
+ if iou.item() > iou_thre and object_score.item() > 0:
569
+ valid_indices.insert(0, i)
570
+ if len(valid_indices) >= max_obj_ptrs_in_encoder - 1:
571
+ break
572
+ if frame_idx - 1 not in valid_indices: ##pick last frame
573
+ valid_indices.append(frame_idx-1)
574
+
575
+ prev_idxs = [start_frame_idx]
576
+ for t_pos in range(1, self.num_maskmem):
577
+ idx = t_pos - self.num_maskmem
578
+ if idx < -len(valid_indices):
579
+ continue
580
+ out = output_dict["non_cond_frame_outputs"].get(valid_indices[idx], None)
581
+ if out is None:
582
+ out = unselected_cond_outputs.get(valid_indices[idx], None)
583
+ t_pos_and_prevs.append((t_pos, out))
584
+ prev_idxs.append(valid_indices[idx])
585
+
586
+ object_frame_score = [torch.ones(num_object).to(cond_outputs[start_frame_idx]['obj_ptr'].device, torch.bfloat16)*10]
587
+ for (t_pos, prev), prev_idx in zip(t_pos_and_prevs, prev_idxs):
588
+ if prev is None:
589
+ continue # skip padding frames
590
+ # "maskmem_features" might have been offloaded to CPU in demo use cases,
591
+ # so we load it back to GPU (it's a no-op if it's already on GPU).
592
+ if t_pos > 0 and mem_pick_index != 0:
593
+ object_frame_score.append(prev["object_score_logits"][...,mem_pick_index[prev_idx]].view(-1))
594
+ feats = prev["maskmem_features"][...,mem_pick_index[prev_idx]].to(device, non_blocking=True)
595
+ else:
596
+ feats = prev["maskmem_features"].to(device, non_blocking=True)
597
+ to_cat_memory.append(feats.flatten(2).permute(2, 0, 1))
598
+ # Spatial positional encoding (it might have been offloaded to CPU in eval)
599
+ maskmem_enc = prev["maskmem_pos_enc"][-1].to(device)
600
+ maskmem_enc = maskmem_enc.flatten(2).permute(2, 0, 1)
601
+ # Temporal positional encoding
602
+ maskmem_enc = (
603
+ maskmem_enc + self.maskmem_tpos_enc[self.num_maskmem - t_pos - 1]
604
+ )
605
+ to_cat_memory_pos_embed.append(maskmem_enc)
606
+
607
+ # Construct the list of past object pointers
608
+ if self.use_obj_ptrs_in_encoder:
609
+ max_obj_ptrs_in_encoder = min(num_frames, self.max_obj_ptrs_in_encoder)
610
+ # First add those object pointers from selected conditioning frames
611
+ # (optionally, only include object pointers in the past during evaluation)
612
+ if not self.training and self.only_obj_ptrs_in_the_past_for_eval:
613
+ ptr_cond_outputs = {
614
+ t: out
615
+ for t, out in selected_cond_outputs.items()
616
+ if (t >= frame_idx if track_in_reverse else t <= frame_idx)
617
+ }
618
+ else:
619
+ ptr_cond_outputs = selected_cond_outputs
620
+ pos_and_ptrs = [
621
+ # Temporal pos encoding contains how far away each pointer is from current frame
622
+ (abs(frame_idx - t), out["obj_ptr"])
623
+ for t, out in ptr_cond_outputs.items()
624
+ ]
625
+ # Add up to (max_obj_ptrs_in_encoder - 1) non-conditioning frames before current frame
626
+ object_ptr_score = [torch.ones(num_object).to(cond_outputs[start_frame_idx]['obj_ptr'].device, torch.bfloat16)*10]
627
+ for t_diff in range(1, max_obj_ptrs_in_encoder):
628
+ if -t_diff <= -len(valid_indices):
629
+ break
630
+ out = output_dict["non_cond_frame_outputs"].get(
631
+ valid_indices[-t_diff], unselected_cond_outputs.get(valid_indices[-t_diff], None))
632
+ if out is not None:
633
+ mem_idx = mem_pick_index[valid_indices[-t_diff]]
634
+ object_ptr_score.append(out['object_score_logits'][...,mem_idx].view(-1))
635
+ pos_and_ptrs.append((t_diff, out["obj_ptr"][...,mem_idx]))
636
+ # object_ptr_score.append(output_dict["non_cond_frame_outputs"][valid_indices[-t_diff]]['object_score'].item())
637
+ # If we have at least one object pointer, add them to the across attention
638
+ if len(pos_and_ptrs) > 0:
639
+ pos_list, ptrs_list = zip(*pos_and_ptrs)
640
+ # stack object pointers along dim=0 into [ptr_seq_len, B, C] shape
641
+ obj_ptrs = torch.stack(ptrs_list, dim=0)
642
+ # a temporal positional embedding based on how far each object pointer is from
643
+ # the current frame (sine embedding normalized by the max pointer num).
644
+ if self.add_tpos_enc_to_obj_ptrs:
645
+ t_diff_max = max_obj_ptrs_in_encoder - 1
646
+ tpos_dim = C if self.proj_tpos_enc_in_obj_ptrs else self.mem_dim
647
+ obj_pos = torch.tensor(pos_list, device=device)
648
+ obj_pos = get_1d_sine_pe(obj_pos / t_diff_max, dim=tpos_dim)
649
+ obj_pos = self.obj_ptr_tpos_proj(obj_pos)
650
+ obj_pos = obj_pos.unsqueeze(1).expand(-1, B, self.mem_dim)
651
+ else:
652
+ obj_pos = obj_ptrs.new_zeros(len(pos_list), B, self.mem_dim)
653
+ if self.mem_dim < C:
654
+ # split a pointer into (C // self.mem_dim) tokens for self.mem_dim < C
655
+ obj_ptrs = obj_ptrs.reshape(
656
+ -1, B, C // self.mem_dim, self.mem_dim
657
+ )
658
+ obj_ptrs = obj_ptrs.permute(0, 2, 1, 3).flatten(0, 1)
659
+ obj_pos = obj_pos.repeat_interleave(C // self.mem_dim, dim=0)
660
+ to_cat_memory.append(obj_ptrs)
661
+ to_cat_memory_pos_embed.append(obj_pos)
662
+ num_obj_ptr_tokens = obj_ptrs.shape[0]
663
+ else:
664
+ num_obj_ptr_tokens = 0
665
+ else:
666
+ # for initial conditioning frames, encode them without using any previous memory
667
+ if self.directly_add_no_mem_embed:
668
+ # directly add no-mem embedding (instead of using the transformer encoder)
669
+ pix_feat_with_mem = current_vision_feats[-1] + self.no_mem_embed
670
+ pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
671
+ return pix_feat_with_mem
672
+
673
+ # Use a dummy token on the first frame (to avoid empty memory input to tranformer encoder)
674
+ to_cat_memory = [self.no_mem_embed.expand(1, B, self.mem_dim)]
675
+ to_cat_memory_pos_embed = [self.no_mem_pos_enc.expand(1, B, self.mem_dim)]
676
+
677
+ # Step 2: Concatenate the memories and forward through the transformer encoder
678
+ memory = torch.cat(to_cat_memory, dim=0)
679
+ memory_pos_embed = torch.cat(to_cat_memory_pos_embed, dim=0)
680
+
681
+ pix_feat_with_mem = self.memory_attention(
682
+ curr=current_vision_feats,
683
+ curr_pos=current_vision_pos_embeds,
684
+ memory=memory,
685
+ memory_pos=memory_pos_embed,
686
+ num_obj_ptr_tokens=num_obj_ptr_tokens,
687
+ object_frame_scores=object_frame_score,
688
+ object_ptr_scores=object_ptr_score,
689
+ )
690
+ # reshape the output (HW)BC => BCHW
691
+ pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
692
+
693
+ return pix_feat_with_mem
694
+
695
+ def _encode_new_memory(
696
+ self,
697
+ current_vision_feats,
698
+ feat_sizes,
699
+ pred_masks_high_res,
700
+ object_score_logits,
701
+ is_mask_from_pts,
702
+ ):
703
+ """Encode the current image and its prediction into a memory feature."""
704
+ B = current_vision_feats[-1].size(1) # batch size on this frame
705
+ C = self.hidden_dim
706
+ H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size
707
+ # top-level feature, (HW)BC => BCHW
708
+ pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
709
+ if self.non_overlap_masks_for_mem_enc and not self.training:
710
+ # optionally, apply non-overlapping constraints to the masks (it's applied
711
+ # in the batch dimension and should only be used during eval, where all
712
+ # the objects come from the same video under batch size 1).
713
+ pred_masks_high_res = self._apply_non_overlapping_constraints(
714
+ pred_masks_high_res
715
+ )
716
+ # scale the raw mask logits with a temperature before applying sigmoid
717
+ binarize = self.binarize_mask_from_pts_for_mem_enc and is_mask_from_pts
718
+ if binarize and not self.training:
719
+ mask_for_mem = (pred_masks_high_res > 0).float()
720
+ else:
721
+ # apply sigmoid on the raw mask logits to turn them into range (0, 1)
722
+ mask_for_mem = torch.sigmoid(pred_masks_high_res)
723
+ # apply scale and bias terms to the sigmoid probabilities
724
+ if self.sigmoid_scale_for_mem_enc != 1.0:
725
+ mask_for_mem = mask_for_mem * self.sigmoid_scale_for_mem_enc
726
+ if self.sigmoid_bias_for_mem_enc != 0.0:
727
+ mask_for_mem = mask_for_mem + self.sigmoid_bias_for_mem_enc
728
+
729
+ maskmem_out = self.memory_encoder(
730
+ pix_feat, mask_for_mem, skip_mask_sigmoid=True # sigmoid already applied
731
+ )
732
+ maskmem_features = maskmem_out["vision_features"]
733
+ maskmem_pos_enc = maskmem_out["vision_pos_enc"]
734
+ # add a no-object embedding to the spatial memory to indicate that the frame
735
+ # is predicted to be occluded (i.e. no object is appearing in the frame)
736
+ if self.no_obj_embed_spatial is not None:
737
+ is_obj_appearing = (object_score_logits > 0).float()
738
+ maskmem_features += (
739
+ 1 - is_obj_appearing[..., None, None]
740
+ ) * self.no_obj_embed_spatial[..., None, None].expand(
741
+ *maskmem_features.shape
742
+ )
743
+
744
+ return maskmem_features, maskmem_pos_enc
745
+
746
+ def _track_step(
747
+ self,
748
+ frame_idx,
749
+ is_init_cond_frame,
750
+ current_vision_feats,
751
+ current_vision_pos_embeds,
752
+ feat_sizes,
753
+ point_inputs,
754
+ mask_inputs,
755
+ output_dict,
756
+ num_frames,
757
+ track_in_reverse,
758
+ prev_sam_mask_logits,
759
+ mem_pick_index=0,
760
+ start_frame_idx=0,
761
+ iou_thre=0.1,
762
+ ):
763
+ current_out = {"point_inputs": point_inputs, "mask_inputs": mask_inputs}
764
+ # High-resolution feature maps for the SAM head, reshape (HW)BC => BCHW
765
+ if len(current_vision_feats) > 1:
766
+ high_res_features = [
767
+ x.permute(1, 2, 0).view(x.size(1), x.size(2), *s)
768
+ for x, s in zip(current_vision_feats[:-1], feat_sizes[:-1])
769
+ ]
770
+ else:
771
+ high_res_features = None
772
+ if mask_inputs is not None and self.use_mask_input_as_output_without_sam:
773
+ # When use_mask_input_as_output_without_sam=True, we directly output the mask input
774
+ # (see it as a GT mask) without using a SAM prompt encoder + mask decoder.
775
+ pix_feat = current_vision_feats[-1].permute(1, 2, 0)
776
+ pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1])
777
+ sam_outputs = self._use_mask_as_output(
778
+ pix_feat, high_res_features, mask_inputs
779
+ )
780
+ else:
781
+ # fused the visual feature with previous memory features in the memory bank
782
+ pix_feat = self._prepare_memory_conditioned_features(
783
+ frame_idx=frame_idx,
784
+ is_init_cond_frame=is_init_cond_frame,
785
+ current_vision_feats=current_vision_feats[-1:],
786
+ current_vision_pos_embeds=current_vision_pos_embeds[-1:],
787
+ feat_sizes=feat_sizes[-1:],
788
+ output_dict=output_dict,
789
+ num_frames=num_frames,
790
+ track_in_reverse=track_in_reverse,
791
+ mem_pick_index=mem_pick_index,
792
+ start_frame_idx=start_frame_idx,
793
+ iou_thre=iou_thre,
794
+ )
795
+ # apply SAM-style segmentation head
796
+ # here we might feed previously predicted low-res SAM mask logits into the SAM mask decoder,
797
+ # e.g. in demo where such logits come from earlier interaction instead of correction sampling
798
+ # (in this case, any `mask_inputs` shouldn't reach here as they are sent to _use_mask_as_output instead)
799
+ if prev_sam_mask_logits is not None:
800
+ assert point_inputs is not None and mask_inputs is None
801
+ mask_inputs = prev_sam_mask_logits
802
+ multimask_output = self._use_multimask(is_init_cond_frame, point_inputs)
803
+ sam_outputs = self._forward_sam_heads(
804
+ backbone_features=pix_feat,
805
+ point_inputs=point_inputs,
806
+ mask_inputs=mask_inputs,
807
+ high_res_features=high_res_features,
808
+ multimask_output=multimask_output,
809
+ )
810
+
811
+ return current_out, sam_outputs, high_res_features, pix_feat
812
+
813
+ def _encode_memory_in_output(
814
+ self,
815
+ current_vision_feats,
816
+ feat_sizes,
817
+ point_inputs,
818
+ run_mem_encoder,
819
+ high_res_masks,
820
+ object_score_logits,
821
+ current_out,
822
+ ):
823
+ if run_mem_encoder and self.num_maskmem > 0:
824
+ high_res_masks_for_mem_enc = high_res_masks
825
+ maskmem_features, maskmem_pos_enc = self._encode_new_memory(
826
+ current_vision_feats=current_vision_feats,
827
+ feat_sizes=feat_sizes,
828
+ pred_masks_high_res=high_res_masks_for_mem_enc,
829
+ object_score_logits=object_score_logits,
830
+ is_mask_from_pts=(point_inputs is not None),
831
+ )
832
+ current_out["maskmem_features"] = maskmem_features
833
+ current_out["maskmem_pos_enc"] = maskmem_pos_enc
834
+ else:
835
+ current_out["maskmem_features"] = None
836
+ current_out["maskmem_pos_enc"] = None
837
+
838
+ def track_step(
839
+ self,
840
+ frame_idx,
841
+ is_init_cond_frame,
842
+ current_vision_feats,
843
+ current_vision_pos_embeds,
844
+ feat_sizes,
845
+ point_inputs,
846
+ mask_inputs,
847
+ output_dict,
848
+ num_frames,
849
+ track_in_reverse=False, # tracking in reverse time order (for demo usage)
850
+ # Whether to run the memory encoder on the predicted masks. Sometimes we might want
851
+ # to skip the memory encoder with `run_mem_encoder=False`. For example,
852
+ # in demo we might call `track_step` multiple times for each user click,
853
+ # and only encode the memory when the user finalizes their clicks. And in ablation
854
+ # settings like SAM training on static images, we don't need the memory encoder.
855
+ run_mem_encoder=True,
856
+ # The previously predicted SAM mask logits (which can be fed together with new clicks in demo).
857
+ prev_sam_mask_logits=None,
858
+ mem_pick_index=0,
859
+ start_frame_idx=0,
860
+ iou_thre=0.1,
861
+ ):
862
+ current_out, sam_outputs, _, _ = self._track_step(
863
+ frame_idx,
864
+ is_init_cond_frame,
865
+ current_vision_feats,
866
+ current_vision_pos_embeds,
867
+ feat_sizes,
868
+ point_inputs,
869
+ mask_inputs,
870
+ output_dict,
871
+ num_frames,
872
+ track_in_reverse,
873
+ prev_sam_mask_logits,
874
+ mem_pick_index,
875
+ start_frame_idx,
876
+ iou_thre,
877
+ )
878
+
879
+ (
880
+ low_res_multimasks,
881
+ high_res_multimasks,
882
+ ious,
883
+ low_res_masks,
884
+ high_res_masks,
885
+ obj_ptr,
886
+ object_score_logits,
887
+ obj_ptrs,
888
+ ) = sam_outputs
889
+
890
+
891
+ if mem_pick_index == 0:
892
+ current_out["pred_masks"] = low_res_masks
893
+ current_out["ious"] = ious.max(-1)[0]
894
+ current_out["object_score"] = object_score_logits[:,0]
895
+ current_out["obj_ptr"] = obj_ptr
896
+ current_out["pred_masks_high_res"] = high_res_masks
897
+ else:
898
+ current_out["pred_masks"] = low_res_multimasks
899
+ current_out["ious"] = ious
900
+ current_out["object_score"] = object_score_logits[:,0]
901
+ current_out["obj_ptr"] = obj_ptrs
902
+ current_out["pred_masks_high_res"] = high_res_multimasks
903
+
904
+
905
+
906
+
907
+ if not self.training:
908
+ # Only add this in inference (to avoid unused param in activation checkpointing;
909
+ # it's mainly used in the demo to encode spatial memories w/ consolidated masks)
910
+ current_out["object_score_logits"] = object_score_logits
911
+
912
+
913
+ return current_out
914
+
915
+ def _use_multimask(self, is_init_cond_frame, point_inputs):
916
+ """Whether to use multimask output in the SAM head."""
917
+ num_pts = 0 if point_inputs is None else point_inputs["point_labels"].size(1)
918
+ multimask_output = (
919
+ self.multimask_output_in_sam
920
+ and (is_init_cond_frame or self.multimask_output_for_tracking)
921
+ and (self.multimask_min_pt_num <= num_pts <= self.multimask_max_pt_num)
922
+ )
923
+ return multimask_output
924
+
925
+ def _apply_non_overlapping_constraints(self, pred_masks):
926
+ """
927
+ Apply non-overlapping constraints to the object scores in pred_masks. Here we
928
+ keep only the highest scoring object at each spatial location in pred_masks.
929
+ """
930
+ batch_size = pred_masks.size(0)
931
+ if batch_size == 1:
932
+ return pred_masks
933
+
934
+ device = pred_masks.device
935
+ # "max_obj_inds": object index of the object with the highest score at each location
936
+ max_obj_inds = torch.argmax(pred_masks, dim=0, keepdim=True)
937
+ # "batch_obj_inds": object index of each object slice (along dim 0) in `pred_masks`
938
+ batch_obj_inds = torch.arange(batch_size, device=device)[:, None, None, None]
939
+ keep = max_obj_inds == batch_obj_inds
940
+ # suppress overlapping regions' scores below -10.0 so that the foreground regions
941
+ # don't overlap (here sigmoid(-10.0)=4.5398e-05)
942
+ pred_masks = torch.where(keep, pred_masks, torch.clamp(pred_masks, max=-10.0))
943
+ return pred_masks