SAM2Long-Demo / app.py
Mar2Ding's picture
Update app.py
bc1f37f verified
import subprocess
import re
from typing import List, Tuple, Optional
import spaces
# Define the command to be executed
command = ["python", "setup.py", "build_ext", "--inplace"]
# Execute the command
result = subprocess.run(command, capture_output=True, text=True)
css="""
div#component-18, div#component-25, div#component-35, div#component-41{
align-items: stretch!important;
}
"""
# Print the output and error (if any)
print("Output:\n", result.stdout)
print("Errors:\n", result.stderr)
# Check if the command was successful
if result.returncode == 0:
print("Command executed successfully.")
else:
print("Command failed with return code:", result.returncode)
import gradio as gr
from datetime import datetime
import os
os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "1"
import torch
import numpy as np
import cv2
import matplotlib.pyplot as plt
from PIL import Image, ImageFilter
from sam2.build_sam import build_sam2_video_predictor
from moviepy.editor import ImageSequenceClip
def sparse_sampling(jpeg_images, original_fps, target_fps=6):
# Calculate the frame interval for sampling based on the target fps
frame_interval = int(original_fps // target_fps)
# Sparse sample the jpeg_images by selecting every 'frame_interval' frame
sampled_images = [jpeg_images[i] for i in range(0, len(jpeg_images), frame_interval)]
return sampled_images
def get_video_fps(video_path):
# Open the video file
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("Error: Could not open video.")
return None
# Get the FPS of the video
fps = cap.get(cv2.CAP_PROP_FPS)
return fps
def clear_points(image):
# we clean all
return [
image, # first_frame_path
[], # tracking_points
[], # trackings_input_label
image, # points_map
#gr.State() # stored_inference_state
]
def preprocess_video_in(video_path):
# Generate a unique ID based on the current date and time
unique_id = datetime.now().strftime('%Y%m%d%H%M%S')
# Set directory with this ID to store video frames
extracted_frames_output_dir = f'frames_{unique_id}'
# Create the output directory
os.makedirs(extracted_frames_output_dir, exist_ok=True)
### Process video frames ###
# Open the video file
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("Error: Could not open video.")
return None
# Get the frames per second (FPS) of the video
fps = cap.get(cv2.CAP_PROP_FPS)
# Calculate the number of frames to process (60 seconds of video)
max_frames = int(fps * 60)
frame_number = 0
first_frame = None
while True:
ret, frame = cap.read()
if not ret or frame_number >= max_frames:
break
if frame_number % 6 == 0:
# Format the frame filename as '00000.jpg'
frame_filename = os.path.join(extracted_frames_output_dir, f'{frame_number:05d}.jpg')
# Save the frame as a JPEG file
cv2.imwrite(frame_filename, frame)
# Store the first frame
if frame_number == 0:
first_frame = frame_filename
frame_number += 1
# Release the video capture object
cap.release()
# scan all the JPEG frame names in this directory
scanned_frames = [
p for p in os.listdir(extracted_frames_output_dir)
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
]
scanned_frames.sort(key=lambda p: int(os.path.splitext(p)[0]))
# print(f"SCANNED_FRAMES: {scanned_frames}")
return [
first_frame, # first_frame_path
[], # tracking_points
[], # trackings_input_label
first_frame, # input_first_frame_image
first_frame, # points_map
extracted_frames_output_dir, # video_frames_dir
scanned_frames, # scanned_frames
None, # stored_inference_state
None, # stored_frame_names
gr.update(open=False) # video_in_drawer
]
def get_point(point_type, tracking_points, trackings_input_label, input_first_frame_image, evt: gr.SelectData):
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
tracking_points.append(evt.index)
# tracking_points.value.append(evt.index)
print(f"TRACKING POINT: {tracking_points}")
if point_type == "include":
trackings_input_label.append(1)
# trackings_input_label.value.append(1)
elif point_type == "exclude":
trackings_input_label.append(0)
# trackings_input_label.value.append(0)
print(f"TRACKING INPUT LABEL: {trackings_input_label}")
# Open the image and get its dimensions
transparent_background = Image.open(input_first_frame_image).convert('RGBA')
w, h = transparent_background.size
# Define the circle radius as a fraction of the smaller dimension
fraction = 0.02 # You can adjust this value as needed
radius = int(fraction * min(w, h))
# Create a transparent layer to draw on
transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
for index, track in enumerate(tracking_points):
if trackings_input_label[index] == 1:
cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1)
else:
cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1)
# Convert the transparent layer back to an image
transparent_layer = Image.fromarray(transparent_layer, 'RGBA')
selected_point_map = Image.alpha_composite(transparent_background, transparent_layer)
return tracking_points, trackings_input_label, selected_point_map
def show_mask(mask, ax, obj_id=None, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
cmap = plt.get_cmap("tab10")
cmap_idx = 0 if obj_id is None else obj_id
color = np.array([*cmap(cmap_idx)[:3], 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=200):
pos_points = coords[labels==1]
neg_points = coords[labels==0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))
def load_model(checkpoint):
# Load model accordingly to user's choice
if checkpoint == "tiny":
sam2_checkpoint = "./checkpoints/sam2.1_hiera_tiny.pt"
model_cfg = "configs/sam2.1/sam2.1_hiera_t.yaml"
return [sam2_checkpoint, model_cfg]
elif checkpoint == "samll":
sam2_checkpoint = "./checkpoints/sam2.1_hiera_small.pt"
model_cfg = "configs/sam2.1/sam2.1_hiera_s.yaml"
return [sam2_checkpoint, model_cfg]
elif checkpoint == "base-plus":
sam2_checkpoint = "./checkpoints/sam2.1_hiera_base_plus.pt"
model_cfg = "configs/sam2.1/sam2.1_hiera_b+.yaml"
return [sam2_checkpoint, model_cfg]
# elif checkpoint == "large":
# sam2_checkpoint = "./checkpoints/sam2.1_hiera_large.pt"
# model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml"
# return [sam2_checkpoint, model_cfg]
def get_mask_sam_process(
stored_inference_state,
input_first_frame_image,
checkpoint,
tracking_points,
trackings_input_label,
video_frames_dir, # extracted_frames_output_dir defined in 'preprocess_video_in' function
scanned_frames,
working_frame: str = None, # current frame being added points
available_frames_to_check: List[str] = [],
# progress=gr.Progress(track_tqdm=True)
):
# get model and model config paths
print(f"USER CHOSEN CHECKPOINT: {checkpoint}")
sam2_checkpoint, model_cfg = load_model(checkpoint)
print("MODEL LOADED")
# set predictor
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device='cpu')
print("PREDICTOR READY")
# `video_dir` a directory of JPEG frames with filenames like `<frame_index>.jpg`
# print(f"STATE FRAME OUTPUT DIRECTORY: {video_frames_dir}")
video_dir = video_frames_dir
# scan all the JPEG frame names in this directory
frame_names = scanned_frames
# print(f"STORED INFERENCE STEP: {stored_inference_state}")
if stored_inference_state is None:
# Init SAM2 inference_state
inference_state = predictor.init_state(video_path=video_dir)
inference_state['num_pathway'] = 3
inference_state['iou_thre'] = 0.3
inference_state['uncertainty'] = 2
print("NEW INFERENCE_STATE INITIATED")
else:
inference_state = stored_inference_state
inference_state["device"] = 'cpu'
# segment and track one object
# predictor.reset_state(inference_state) # if any previous tracking, reset
### HANDLING WORKING FRAME
# new_working_frame = None
# Add new point
if working_frame is None:
ann_frame_idx = 0 # the frame index we interact with, 0 if it is the first frame
working_frame = "00000.jpg"
else:
# Use a regular expression to find the integer
match = re.search(r'frame_(\d+)', working_frame)
if match:
# Extract the integer from the match
frame_number = int(match.group(1))
ann_frame_idx = frame_number
print(f"NEW_WORKING_FRAME PATH: {working_frame}")
ann_obj_id = 1 # give a unique id to each object we interact with (it can be any integers)
# Let's add a positive click at (x, y) = (210, 350) to get started
points = np.array(tracking_points, dtype=np.float32)
# for labels, `1` means positive click and `0` means negative click
labels = np.array(trackings_input_label, np.int32)
_, out_obj_ids, out_mask_logits = predictor.add_new_points(
inference_state=inference_state,
frame_idx=ann_frame_idx,
obj_id=ann_obj_id,
points=points,
labels=labels,
)
# Create the plot
plt.figure(figsize=(12, 8))
plt.title(f"frame {ann_frame_idx}")
plt.imshow(Image.open(os.path.join(video_dir, frame_names[ann_frame_idx])))
show_points(points, labels, plt.gca())
show_mask((out_mask_logits[0] > 0.0).cpu().numpy(), plt.gca(), obj_id=out_obj_ids[0])
# Save the plot as a JPG file
first_frame_output_filename = "output_first_frame.jpg"
plt.savefig(first_frame_output_filename, format='jpg')
plt.close()
# torch.cuda.empty_cache()
# Assuming available_frames_to_check.value is a list
if working_frame not in available_frames_to_check:
available_frames_to_check.append(working_frame)
print(available_frames_to_check)
# return gr.update(visible=True), "output_first_frame.jpg", frame_names, predictor, inference_state, gr.update(choices=available_frames_to_check, value=working_frame, visible=True)
return "output_first_frame.jpg", frame_names, predictor, inference_state, gr.update(choices=available_frames_to_check, value=working_frame, visible=False)
@spaces.GPU
def propagate_to_all(video_in, checkpoint, stored_inference_state, stored_frame_names, video_frames_dir, vis_frame_type, available_frames_to_check, working_frame, progress=gr.Progress(track_tqdm=True)):
# use bfloat16 for the entire notebook
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
if torch.cuda.get_device_properties(0).major >= 8:
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
#### PROPAGATION ####
sam2_checkpoint, model_cfg = load_model(checkpoint)
# set predictor
inference_state = stored_inference_state
if torch.cuda.is_available():
inference_state["device"] = 'cuda'
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
else:
inference_state["device"] = 'cpu'
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device='cpu')
frame_names = stored_frame_names
video_dir = video_frames_dir
# Define a directory to save the JPEG images
frames_output_dir = "frames_output_images"
os.makedirs(frames_output_dir, exist_ok=True)
# Initialize a list to store file paths of saved images
jpeg_images = []
# run propagation throughout the video and collect the results in a dict
video_segments = {} # video_segments contains the per-frame segmentation results
# for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state):
# video_segments[out_frame_idx] = {
# out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
# for i, out_obj_id in enumerate(out_obj_ids)
# }
out_obj_ids, out_mask_logits = predictor.propagate_in_video(inference_state, start_frame_idx=0, reverse=False,)
print(out_obj_ids)
for frame_idx in range(0, inference_state['num_frames']):
video_segments[frame_idx] = {out_obj_ids[0]: (out_mask_logits[frame_idx]> 0.0).cpu().numpy()}
# output_scores_per_object[object_id][frame_idx] = out_mask_logits[frame_idx].cpu().numpy()
# render the segmentation results every few frames
if vis_frame_type == "check":
vis_frame_stride = 15
elif vis_frame_type == "render":
vis_frame_stride = 1
plt.close("all")
for out_frame_idx in range(0, len(frame_names), vis_frame_stride):
plt.figure(figsize=(6, 4))
plt.title(f"frame {out_frame_idx}")
plt.imshow(Image.open(os.path.join(video_dir, frame_names[out_frame_idx])))
for out_obj_id, out_mask in video_segments[out_frame_idx].items():
show_mask(out_mask, plt.gca(), obj_id=out_obj_id)
# Define the output filename and save the figure as a JPEG file
output_filename = os.path.join(frames_output_dir, f"frame_{out_frame_idx}.jpg")
plt.savefig(output_filename, format='jpg')
# Close the plot
plt.close()
# Append the file path to the list
jpeg_images.append(output_filename)
if f"frame_{out_frame_idx}.jpg" not in available_frames_to_check:
available_frames_to_check.append(f"frame_{out_frame_idx}.jpg")
torch.cuda.empty_cache()
print(f"JPEG_IMAGES: {jpeg_images}")
if vis_frame_type == "check":
return gr.update(value=jpeg_images), gr.update(value=None), gr.update(choices=available_frames_to_check, value=working_frame, visible=True), available_frames_to_check, gr.update(visible=True)
elif vis_frame_type == "render":
# Create a video clip from the image sequence
original_fps = get_video_fps(video_in)
# sampled_images = sparse_sampling(jpeg_images, original_fps, target_fps=6)
clip = ImageSequenceClip(jpeg_images, fps=original_fps//6)
# clip = ImageSequenceClip(jpeg_images, fps=fps)
# Write the result to a file
final_vid_output_path = "output_video.mp4"
# Write the result to a file
clip.write_videofile(
final_vid_output_path,
codec='libx264'
)
return gr.update(value=None), gr.update(value=final_vid_output_path), working_frame, available_frames_to_check, gr.update(visible=True)
def update_ui(vis_frame_type):
if vis_frame_type == "check":
return gr.update(visible=True), gr.update(visible=False)
elif vis_frame_type == "render":
return gr.update(visible=False), gr.update(visible=True)
def switch_working_frame(working_frame, scanned_frames, video_frames_dir):
new_working_frame = None
if working_frame == None:
new_working_frame = os.path.join(video_frames_dir, scanned_frames[0])
else:
# Use a regular expression to find the integer
match = re.search(r'frame_(\d+)', working_frame)
if match:
# Extract the integer from the match
frame_number = int(match.group(1))
ann_frame_idx = frame_number
new_working_frame = os.path.join(video_frames_dir, scanned_frames[ann_frame_idx])
return gr.State([]), gr.State([]), new_working_frame, new_working_frame
def reset_propagation(first_frame_path, predictor, stored_inference_state):
predictor.reset_state(stored_inference_state)
# print(f"RESET State: {stored_inference_state} ")
return first_frame_path, [], [], gr.update(value=None, visible=False), stored_inference_state, None, ["frame_0.jpg"], first_frame_path, "frame_0.jpg", gr.update(visible=False)
with gr.Blocks(css=css) as demo:
first_frame_path = gr.State()
tracking_points = gr.State([])
trackings_input_label = gr.State([])
video_frames_dir = gr.State()
scanned_frames = gr.State()
loaded_predictor = gr.State()
stored_inference_state = gr.State()
stored_frame_names = gr.State()
available_frames_to_check = gr.State([])
with gr.Column():
gr.Markdown(
"""
<h1 style="text-align: center;">🔥 SAM2Long Demo 🔥</h1>
"""
)
gr.Markdown(
"""
This is a simple demo for video segmentation with [SAM2Long](https://github.com/Mark12Ding/SAM2Long).
"""
)
gr.Markdown(
"""
### 📋 Instructions:
It is largely built on the [SAM2-Video-Predictor](https://huggingface.co/spaces/fffiloni/SAM2-Video-Predictor).
1. **Upload your video** [MP4-24fps]
2. With **'include' point type** selected, click on the object to mask on the first frame
3. Switch to **'exclude' point type** if you want to specify an area to avoid
4. **Get Mask!**
5. **Check Propagation** every 15 frames
6. **Propagate with "render"** to render the final masked video
7. **Hit Reset** button if you want to refresh and start again
*Note: Input video will be processed for up to 60 seconds only for demo purposes.*
"""
)
with gr.Row():
with gr.Column():
with gr.Group():
with gr.Group():
with gr.Row():
point_type = gr.Radio(label="point type", choices=["include", "exclude"], value="include", scale=2)
clear_points_btn = gr.Button("Clear Points", scale=1)
input_first_frame_image = gr.Image(label="input image", interactive=False, type="filepath", visible=False)
points_map = gr.Image(
label="Point n Click map",
type="filepath",
interactive=False
)
with gr.Group():
with gr.Row():
checkpoint = gr.Dropdown(label="Checkpoint", choices=["tiny", "small", "base-plus"], value="tiny")
submit_btn = gr.Button("Get Mask", size="lg")
with gr.Accordion("Your video IN", open=True) as video_in_drawer:
video_in = gr.Video(label="Video IN", format="mp4")
gr.HTML("""
<a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg" alt="Duplicate this Space" />
</a> to skip queue and avoid OOM errors from heavy public load
""")
with gr.Column():
with gr.Group():
# with gr.Group():
# with gr.Row():
working_frame = gr.Dropdown(label="working frame ID", choices=["frame_0.jpg"], value="frame_0.jpg", visible=False, allow_custom_value=False, interactive=True)
# change_current = gr.Button("change current", visible=False)
# working_frame = []
output_result = gr.Image(label="current working mask ref")
with gr.Group():
with gr.Row():
vis_frame_type = gr.Radio(label="Propagation level", choices=["check", "render"], value="check", scale=2)
propagate_btn = gr.Button("Propagate", scale=2)
reset_prpgt_brn = gr.Button("Reset", visible=False)
output_propagated = gr.Gallery(label="Propagated Mask samples gallery", columns=4, visible=False)
output_video = gr.Video(visible=False)
# output_result_mask = gr.Image()
# When new video is uploaded
video_in.upload(
fn = preprocess_video_in,
inputs = [video_in],
outputs = [
first_frame_path,
tracking_points, # update Tracking Points in the gr.State([]) object
trackings_input_label, # update Tracking Labels in the gr.State([]) object
input_first_frame_image, # hidden component used as ref when clearing points
points_map, # Image component where we add new tracking points
video_frames_dir, # Array where frames from video_in are deep stored
scanned_frames, # Scanned frames by SAM2
stored_inference_state, # Sam2 inference state
stored_frame_names, #
video_in_drawer, # Accordion to hide uploaded video player
],
queue = False
)
# triggered when we click on image to add new points
points_map.select(
fn = get_point,
inputs = [
point_type, # "include" or "exclude"
tracking_points, # get tracking_points values
trackings_input_label, # get tracking label values
input_first_frame_image, # gr.State() first frame path
],
outputs = [
tracking_points, # updated with new points
trackings_input_label, # updated with corresponding labels
points_map, # updated image with points
],
queue = False
)
# Clear every points clicked and added to the map
clear_points_btn.click(
fn = clear_points,
inputs = input_first_frame_image, # we get the untouched hidden image
outputs = [
first_frame_path,
tracking_points,
trackings_input_label,
points_map,
#stored_inference_state,
],
queue=False
)
# change_current.click(
# fn = switch_working_frame,
# inputs = [working_frame, scanned_frames, video_frames_dir],
# outputs = [tracking_points, trackings_input_label, input_first_frame_image, points_map],
# queue=False
# )
submit_btn.click(
fn = get_mask_sam_process,
inputs = [
stored_inference_state,
input_first_frame_image,
checkpoint,
tracking_points,
trackings_input_label,
video_frames_dir,
scanned_frames,
working_frame,
available_frames_to_check,
],
outputs = [
output_result,
stored_frame_names,
loaded_predictor,
stored_inference_state,
working_frame,
],
queue=False
)
reset_prpgt_brn.click(
fn = reset_propagation,
inputs = [first_frame_path, loaded_predictor, stored_inference_state],
outputs = [points_map, tracking_points, trackings_input_label, output_propagated, stored_inference_state, output_result, available_frames_to_check, input_first_frame_image, working_frame, reset_prpgt_brn],
queue=False
)
propagate_btn.click(
fn = update_ui,
inputs = [vis_frame_type],
outputs = [output_propagated, output_video],
queue=False
).then(
fn = propagate_to_all,
inputs = [video_in, checkpoint, stored_inference_state, stored_frame_names, video_frames_dir, vis_frame_type, available_frames_to_check, working_frame],
outputs = [output_propagated, output_video, working_frame, available_frames_to_check, reset_prpgt_brn]
)
demo.launch()