Spaces:
Runtime error
Runtime error
import streamlit as st | |
from sentence_transformers import SentenceTransformer | |
from qdrant_client import models, QdrantClient | |
import pandas as pd | |
from datasets import load_dataset | |
#************************************************************* LOAD DATA | |
data = load_dataset("ManuelAlv/academic_conuseling") | |
# Main dataset | |
bert_dataset = data['dataset'].to_pandas() | |
# Dataset used to test the chatbot | |
test_dataset = data['test'].to_pandas() | |
test_dataset.columns = ["test_question", "original_question"] | |
#************************************************************* Create Functions | |
# function to add values | |
def add_value(collection, key, value, id): | |
encoder = SentenceTransformer(collection) | |
qdrant.upsert( | |
collection_name = collection, | |
wait=True, | |
points = [ | |
models.PointStruct( | |
id = id, | |
vector = encoder.encode(key).tolist(), | |
payload = { | |
'text': value, | |
'question': key | |
} | |
) | |
] | |
) | |
# Function to search for a value | |
def search(collection, query): | |
search = qdrant.search( | |
collection_name = collection, | |
query_vector = encoder.encode(query).tolist(), | |
limit = 1 | |
) | |
return search | |
#************************************************************* Create VD | |
# Create a local Vector Database | |
qdrant = QdrantClient(":memory:") | |
# Load the model | |
model = "all-MiniLM-L6-v2" | |
encoder = SentenceTransformer(model) | |
# Create a collection for the model with its embeddings | |
qdrant.recreate_collection( | |
collection_name = model, | |
vectors_config = models.VectorParams( | |
size = encoder.get_sentence_embedding_dimension(), | |
distance = models.Distance.COSINE | |
) | |
) | |
# Add the data to model | |
for index, row in bert_dataset.iterrows(): | |
key = row['question'] | |
value = row['answer'] | |
id = index + 1 | |
add_value(model, key, value, id) | |
# ************************************************************* QUERY | |
# Enter a question | |
question = "I'm feeling sad and lonely" | |
result = search(model, question) | |
result = result[0].payload['text'] | |
def get_response(input): | |
result = search(model, input) | |
result = result[0].payload['text'] | |
return result | |
st.set_page_config(page_title="RAG", page_icon="π§", layout="wide") | |
st.title("UniSA Academic Support") | |
# with st.sidebar: | |
# st.header("Settings") | |
# st.text_input("Enter a website URL") | |
if 'conversation_ended' not in st.session_state: | |
st.session_state['conversation_ended'] = False | |
if not st.session_state['conversation_ended']: | |
with st.chat_message("AI"): | |
st.write("Hi! I'm BrainHug AI, your supportive AI friend.") | |
st.write("Feel free to chat with me at any time, just enter your question. If I can't answer, try rephrasing it again.") | |
st.write("If you want to finish the conversation, just say BYE") | |
user_q = st.chat_input("Start typing here") | |
if user_q: | |
if user_q.upper() == "BYE": | |
st.session_state['conversation_ended'] = True | |
with st.chat_message("AI"): | |
st.write("Goodbye! Feel free to come back anytime.") | |
st.stop() | |
elif user_q is not None or user_q is "": | |
response = get_response(user_q) | |
with st.chat_message("Human"): | |
st.write(user_q) | |
with st.chat_message("AI"): | |
st.write(response) | |
else: | |
st.write("The conversation has ended. Refresh the page to start over.") |