import gradio as gr from PIL import Image import torch from transformers import AutoModelForCausalLM, AutoTokenizer # # Set default device to CUDA for GPU acceleration # device = 'cuda' if torch.cuda.is_available() else "cpu" torch.set_default_device("cuda") # Initialize the model and tokenizer model = AutoModelForCausalLM.from_pretrained("ManishThota/Sparrow", torch_dtype=torch.float16, device_map="auto", trust_remote_code=True).to(device) tokenizer = AutoTokenizer.from_pretrained("ManishThota/Sparrow", trust_remote_code=True) # def predict_answer(image, question): # # Convert PIL image to RGB if not already # image = image.convert("RGB") # # # Format the text input for the model # # text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: \n{question} ASSISTANT:" # # Tokenize the text input # encoding = tokenizer(image, question, return_tensors='pt').to(device) # out = model.generate(**encoding) # # Preprocess the image for the model # generated_text = tokenizer.decode(out[0], skip_special_tokens=True) # # # Generate the answer # # output_ids = model.generate( # # input_ids, # # max_new_tokens=100, # # images=image_tensor, # # use_cache=True)[0] # # # Decode the generated tokens to get the answer # # answer = tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip() # return generated_text def predict_answer(image, question, max_tokens): #Set inputs text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: \n{question}? ASSISTANT:" image = image.convert("RGB") input_ids = tokenizer(text, return_tensors='pt').input_ids.to("cuda:0", torch.float16) image_tensor = model.image_preprocess(image) #Generate the answer output_ids = model.generate( input_ids, max_new_tokens=max_tokens, images=image_tensor, use_cache=True)[0] return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip() def gradio_predict(image, question, max_tokens): answer = predict_answer(image, question, max_tokens) return answer # Define the Gradio interface iface = gr.Interface( fn=gradio_predict, inputs=[gr.Image(type="pil", label="Upload or Drag an Image"), gr.Textbox(label="Question", placeholder="e.g. What are the colors of the bus in the image?", scale=4), gr.Slider(2, 100, value=25, label="Count", info="Choose between 2 and 100")], outputs=gr.TextArea(label="Answer"), title="Sparrow - Tiny 3B | Visual Question Answering", description="An interactive chat model that can answer questions about images in Academic contest.", ) # Launch the app iface.queue().launch(debug=True)