Spaces:
Paused
Paused
ManishThota
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -58,59 +58,95 @@ def extract_frames(frame):
|
|
58 |
|
59 |
return image_bgr
|
60 |
|
61 |
-
def predict_answer(
|
62 |
|
63 |
text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{question}? ASSISTANT:"
|
64 |
input_ids = tokenizer(text, return_tensors='pt').input_ids.to(device)
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
image =
|
70 |
image_tensor = model.image_preprocess(image)
|
71 |
-
|
72 |
-
#Generate the answer
|
73 |
-
output_ids = model.generate(
|
74 |
-
input_ids,
|
75 |
-
max_new_tokens=max_tokens,
|
76 |
-
images=image_tensor,
|
77 |
-
use_cache=True)[0]
|
78 |
-
|
79 |
-
return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
|
80 |
-
|
81 |
-
elif video:
|
82 |
-
# Process as a video
|
83 |
-
frames = video_to_frames(video)
|
84 |
-
answers = []
|
85 |
-
for frame in frames:
|
86 |
-
image = extract_frames(frame)
|
87 |
-
image_tensor = model.image_preprocess(image)
|
88 |
|
89 |
-
|
90 |
-
|
91 |
input_ids,
|
92 |
max_new_tokens=max_tokens,
|
93 |
images=image_tensor,
|
94 |
use_cache=True)[0]
|
95 |
|
96 |
-
|
97 |
-
|
98 |
return answers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
|
|
105 |
|
106 |
-
def gradio_predict(
|
107 |
-
answer = predict_answer(
|
108 |
return answer
|
109 |
|
110 |
iface = gr.Interface(
|
111 |
fn=gradio_predict,
|
112 |
inputs=[
|
113 |
-
gr.Image(type="pil", label="Upload or Drag an Image"),
|
114 |
gr.Video(label="Upload your video here"),
|
115 |
gr.Textbox(label="Question", placeholder="e.g. Can you explain the slide?", scale=4),
|
116 |
gr.Slider(2, 500, value=25, label="Token Count", info="Choose between 2 and 500")],
|
|
|
58 |
|
59 |
return image_bgr
|
60 |
|
61 |
+
def predict_answer(video, question, max_tokens=100):
|
62 |
|
63 |
text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{question}? ASSISTANT:"
|
64 |
input_ids = tokenizer(text, return_tensors='pt').input_ids.to(device)
|
65 |
|
66 |
+
frames = video_to_frames(video)
|
67 |
+
answers = []
|
68 |
+
for i in range(len(frames)):
|
69 |
+
image = extract_frames(frames[i])
|
70 |
image_tensor = model.image_preprocess(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
# Generate the answer
|
73 |
+
output_ids = model.generate(
|
74 |
input_ids,
|
75 |
max_new_tokens=max_tokens,
|
76 |
images=image_tensor,
|
77 |
use_cache=True)[0]
|
78 |
|
79 |
+
answer = tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
|
80 |
+
answers.append(answer)
|
81 |
return answers
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
# if image:
|
86 |
+
# # Process as an image
|
87 |
+
# image = image.convert("RGB")
|
88 |
+
# image_tensor = model.image_preprocess(image)
|
89 |
|
90 |
+
# #Generate the answer
|
91 |
+
# output_ids = model.generate(
|
92 |
+
# input_ids,
|
93 |
+
# max_new_tokens=max_tokens,
|
94 |
+
# images=image_tensor,
|
95 |
+
# use_cache=True)[0]
|
96 |
|
97 |
+
# return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
|
98 |
+
|
99 |
+
# elif video:
|
100 |
+
# # Process as a video
|
101 |
+
# frames = video_to_frames(video)
|
102 |
+
# answers = []
|
103 |
+
# for frame in frames:
|
104 |
+
# image = extract_frames(frame)
|
105 |
+
# image_tensor = model.image_preprocess(image)
|
106 |
+
|
107 |
+
# # Generate the answer
|
108 |
+
# output_ids = model.generate(
|
109 |
+
# input_ids,
|
110 |
+
# max_new_tokens=max_tokens,
|
111 |
+
# images=image_tensor,
|
112 |
+
# use_cache=True)[0]
|
113 |
+
|
114 |
+
# answer = tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
|
115 |
+
# answers.append(answer)
|
116 |
+
# return answers
|
117 |
+
|
118 |
+
# else:
|
119 |
+
# return "Unsupported file type. Please upload an image or video."
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
# def gradio_predict(image, video, question, max_tokens):
|
125 |
+
# answer = predict_answer(image, video, question, max_tokens)
|
126 |
+
# return answer
|
127 |
|
128 |
+
# iface = gr.Interface(
|
129 |
+
# fn=gradio_predict,
|
130 |
+
# inputs=[
|
131 |
+
# gr.Image(type="pil", label="Upload or Drag an Image"),
|
132 |
+
# gr.Video(label="Upload your video here"),
|
133 |
+
# gr.Textbox(label="Question", placeholder="e.g. Can you explain the slide?", scale=4),
|
134 |
+
# gr.Slider(2, 500, value=25, label="Token Count", info="Choose between 2 and 500")],
|
135 |
+
# outputs=gr.TextArea(label="Answer"),
|
136 |
+
# # outputs=gr.Image(label="Output"),
|
137 |
+
# title="Video/Image Viewer",
|
138 |
+
# description="Upload an image or video to view it or extract frames from the video.",
|
139 |
+
# )
|
140 |
|
141 |
+
# iface.launch(debug=True)
|
142 |
|
143 |
+
def gradio_predict(video, question, max_tokens):
|
144 |
+
answer = predict_answer(video, question, max_tokens)
|
145 |
return answer
|
146 |
|
147 |
iface = gr.Interface(
|
148 |
fn=gradio_predict,
|
149 |
inputs=[
|
|
|
150 |
gr.Video(label="Upload your video here"),
|
151 |
gr.Textbox(label="Question", placeholder="e.g. Can you explain the slide?", scale=4),
|
152 |
gr.Slider(2, 500, value=25, label="Token Count", info="Choose between 2 and 500")],
|