Spaces:
Paused
Paused
ManishThota
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -2,8 +2,6 @@ import gradio as gr
|
|
2 |
from PIL import Image
|
3 |
import torch
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
-
import magic
|
6 |
-
import mimetypes
|
7 |
import cv2
|
8 |
import numpy as np
|
9 |
import io
|
@@ -22,16 +20,6 @@ model = AutoModelForCausalLM.from_pretrained("ManishThota/SparrowVQE",
|
|
22 |
tokenizer = AutoTokenizer.from_pretrained("ManishThota/SparrowVQE", trust_remote_code=True)
|
23 |
|
24 |
|
25 |
-
def get_file_type_from_bytes(file_bytes):
|
26 |
-
"""Determine whether a file is an image or a video based on its MIME type from bytes."""
|
27 |
-
mime = magic.Magic(mime=True)
|
28 |
-
mimetype = mime.from_buffer(file_bytes)
|
29 |
-
if mimetype.startswith('image'):
|
30 |
-
return 'image'
|
31 |
-
elif mimetype.startswith('video'):
|
32 |
-
return 'video'
|
33 |
-
return 'unknown'
|
34 |
-
|
35 |
def process_video(video_bytes):
|
36 |
"""Extracts frames from the video, 1 per second."""
|
37 |
video = cv2.VideoCapture(io.BytesIO(video_bytes))
|
@@ -46,15 +34,12 @@ def process_video(video_bytes):
|
|
46 |
return frames[:4] # Return the first 4 frames
|
47 |
|
48 |
|
49 |
-
def predict_answer(
|
50 |
-
|
51 |
-
file_type = get_file_type_from_bytes(file)
|
52 |
|
53 |
-
if
|
54 |
# Process as an image
|
55 |
-
image =
|
56 |
-
|
57 |
-
input_ids = tokenizer(text, return_tensors='pt').input_ids.to(device)
|
58 |
image_tensor = model.image_preprocess(frame)
|
59 |
|
60 |
#Generate the answer
|
@@ -66,13 +51,13 @@ def predict_answer(file, question, max_tokens=100):
|
|
66 |
|
67 |
return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
|
68 |
|
69 |
-
elif
|
70 |
# Process as a video
|
71 |
-
frames = process_video(
|
72 |
answers = []
|
73 |
for frame in frames:
|
74 |
frame = Image.open(frame).convert("RGB")
|
75 |
-
input_ids = tokenizer(
|
76 |
image_tensor = model.image_preprocess(frame)
|
77 |
|
78 |
# Generate the answer
|
@@ -90,45 +75,19 @@ def predict_answer(file, question, max_tokens=100):
|
|
90 |
return "Unsupported file type. Please upload an image or video."
|
91 |
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
# def predict_answer(image, question, max_tokens=100):
|
97 |
-
# #Set inputs
|
98 |
-
# text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{question}? ASSISTANT:"
|
99 |
-
# image = image.convert("RGB")
|
100 |
-
|
101 |
-
# input_ids = tokenizer(text, return_tensors='pt').input_ids.to(device)
|
102 |
-
# image_tensor = model.image_preprocess(image)
|
103 |
-
|
104 |
-
# #Generate the answer
|
105 |
-
# output_ids = model.generate(
|
106 |
-
# input_ids,
|
107 |
-
# max_new_tokens=max_tokens,
|
108 |
-
# images=image_tensor,
|
109 |
-
# use_cache=True)[0]
|
110 |
-
|
111 |
-
# return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
|
112 |
|
113 |
-
|
114 |
-
|
|
|
115 |
return answer
|
116 |
|
117 |
-
|
118 |
-
# examples = [["data/week_01_page_024.png", 'Can you explain the slide?',100],
|
119 |
-
# ["data/week_03_page_091.png", 'Can you explain the slide?',100],
|
120 |
-
# ["data/week_01_page_062.png", 'Are the training images labeled?',100],
|
121 |
-
# ["data/week_05_page_027.png", 'What is meant by eigenvalue multiplicity?',100],
|
122 |
-
# ["data/week_05_page_030.png", 'What does K represent?',100],
|
123 |
-
# ["data/week_15_page_046.png", 'How are individual heterogeneous models trained?',100],
|
124 |
-
# ["data/week_15_page_021.png", 'How does Bagging affect error?',100],
|
125 |
-
# ["data/week_15_page_037.png", "What does the '+' and '-' represent?",100]]
|
126 |
|
127 |
# Define the Gradio interface
|
128 |
iface = gr.Interface(
|
129 |
fn=gradio_predict,
|
130 |
-
inputs=[gr.
|
131 |
-
|
132 |
gr.Textbox(label="Question", placeholder="e.g. Can you explain the slide?", scale=4),
|
133 |
gr.Slider(2, 500, value=25, label="Token Count", info="Choose between 2 and 500")],
|
134 |
outputs=gr.TextArea(label="Answer"),
|
|
|
2 |
from PIL import Image
|
3 |
import torch
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
5 |
import cv2
|
6 |
import numpy as np
|
7 |
import io
|
|
|
20 |
tokenizer = AutoTokenizer.from_pretrained("ManishThota/SparrowVQE", trust_remote_code=True)
|
21 |
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
def process_video(video_bytes):
|
24 |
"""Extracts frames from the video, 1 per second."""
|
25 |
video = cv2.VideoCapture(io.BytesIO(video_bytes))
|
|
|
34 |
return frames[:4] # Return the first 4 frames
|
35 |
|
36 |
|
37 |
+
def predict_answer(image, video, question, max_tokens=100):
|
|
|
|
|
38 |
|
39 |
+
if image:
|
40 |
# Process as an image
|
41 |
+
image = image.convert("RGB")
|
42 |
+
input_ids = tokenizer(question, return_tensors='pt').input_ids.to(device)
|
|
|
43 |
image_tensor = model.image_preprocess(frame)
|
44 |
|
45 |
#Generate the answer
|
|
|
51 |
|
52 |
return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
|
53 |
|
54 |
+
elif video:
|
55 |
# Process as a video
|
56 |
+
frames = process_video(video)
|
57 |
answers = []
|
58 |
for frame in frames:
|
59 |
frame = Image.open(frame).convert("RGB")
|
60 |
+
input_ids = tokenizer(question, return_tensors='pt').input_ids.to(device)
|
61 |
image_tensor = model.image_preprocess(frame)
|
62 |
|
63 |
# Generate the answer
|
|
|
75 |
return "Unsupported file type. Please upload an image or video."
|
76 |
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
+
|
80 |
+
def gradio_predict(image, video, question, max_tokens):
|
81 |
+
answer = predict_answer(image, video, question, max_tokens)
|
82 |
return answer
|
83 |
|
84 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
# Define the Gradio interface
|
87 |
iface = gr.Interface(
|
88 |
fn=gradio_predict,
|
89 |
+
inputs=[gr.Image(type="pil", label="Upload or Drag an Image"),
|
90 |
+
gr.Video(label="upload your video here"),
|
91 |
gr.Textbox(label="Question", placeholder="e.g. Can you explain the slide?", scale=4),
|
92 |
gr.Slider(2, 500, value=25, label="Token Count", info="Choose between 2 and 500")],
|
93 |
outputs=gr.TextArea(label="Answer"),
|