Spaces:
Paused
Paused
ManishThota
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -38,14 +38,14 @@ def gradio_predict(image, question, max_tokens):
|
|
38 |
return answer
|
39 |
|
40 |
|
41 |
-
examples = [["data/week_01_page_024.png", 'Can you explain the slide?',100],
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
|
50 |
# Define the Gradio interface
|
51 |
iface = gr.Interface(
|
@@ -54,8 +54,8 @@ iface = gr.Interface(
|
|
54 |
gr.Textbox(label="Question", placeholder="e.g. Can you explain the slide?", scale=4),
|
55 |
gr.Slider(2, 500, value=100, label="Token Count", info="Choose between 2 and 500")],
|
56 |
outputs=gr.TextArea(label="Answer"),
|
57 |
-
examples=examples,
|
58 |
-
title="
|
59 |
description="An interactive chat model that can answer questions about images in an Academic context. \n We can input images, and the system will analyze them to provide information about their contents. I've utilized this capability by feeding slides from PowerPoint presentations used in classes and the lecture content passed as text. Consequently, the model now mimics the behavior and responses of my professors. So, if I present any PowerPoint slide, it explains it just like my professor would, further it can be personalized.",
|
60 |
)
|
61 |
|
|
|
38 |
return answer
|
39 |
|
40 |
|
41 |
+
# examples = [["data/week_01_page_024.png", 'Can you explain the slide?',100],
|
42 |
+
# ["data/week_03_page_091.png", 'Can you explain the slide?',100],
|
43 |
+
# ["data/week_01_page_062.png", 'Are the training images labeled?',100],
|
44 |
+
# ["data/week_05_page_027.png", 'What is meant by eigenvalue multiplicity?',100],
|
45 |
+
# ["data/week_05_page_030.png", 'What does K represent?',100],
|
46 |
+
# ["data/week_15_page_046.png", 'How are individual heterogeneous models trained?',100],
|
47 |
+
# ["data/week_15_page_021.png", 'How does Bagging affect error?',100],
|
48 |
+
# ["data/week_15_page_037.png", "What does the '+' and '-' represent?",100]]
|
49 |
|
50 |
# Define the Gradio interface
|
51 |
iface = gr.Interface(
|
|
|
54 |
gr.Textbox(label="Question", placeholder="e.g. Can you explain the slide?", scale=4),
|
55 |
gr.Slider(2, 500, value=100, label="Token Count", info="Choose between 2 and 500")],
|
56 |
outputs=gr.TextArea(label="Answer"),
|
57 |
+
# examples=examples,
|
58 |
+
title="SparrowVQE - Tiny 3B | Visual Question Answering",
|
59 |
description="An interactive chat model that can answer questions about images in an Academic context. \n We can input images, and the system will analyze them to provide information about their contents. I've utilized this capability by feeding slides from PowerPoint presentations used in classes and the lecture content passed as text. Consequently, the model now mimics the behavior and responses of my professors. So, if I present any PowerPoint slide, it explains it just like my professor would, further it can be personalized.",
|
60 |
)
|
61 |
|