ManishThota commited on
Commit
7ec133b
·
verified ·
1 Parent(s): 915e263

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +54 -0
app.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from PIL import Image
3
+ import torch
4
+ from transformers import AutoModelForCausalLM, AutoTokenizer
5
+
6
+ # Set default device to CUDA for GPU acceleration
7
+ device = 'cuda' if torch.cuda.is_available() else "cpu"
8
+ # torch.set_default_device("cuda")
9
+
10
+ # Initialize the model and tokenizer
11
+ model = AutoModelForCausalLM.from_pretrained("ManishThota/Sparrow").to(device)
12
+ tokenizer = AutoTokenizer.from_pretrained("ManishThota/Sparrow", trust_remote_code=True)
13
+
14
+ def predict_answer(image, question):
15
+ # Convert PIL image to RGB if not already
16
+ image = image.convert("RGB")
17
+
18
+ # # Format the text input for the model
19
+ # text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{question} ASSISTANT:"
20
+
21
+ # Tokenize the text input
22
+ encoding = tokenizer(image, question, return_tensors='pt').to(device)
23
+
24
+ out = model.generate(**encoding)
25
+ # Preprocess the image for the model
26
+ generated_text = tokenizer.decode(out[0], skip_special_tokens=True)
27
+
28
+ # # Generate the answer
29
+ # output_ids = model.generate(
30
+ # input_ids,
31
+ # max_new_tokens=100,
32
+ # images=image_tensor,
33
+ # use_cache=True)[0]
34
+
35
+ # # Decode the generated tokens to get the answer
36
+ # answer = tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
37
+
38
+ return generated_text
39
+
40
+ def gradio_predict(image, question):
41
+ answer = predict_answer(image, question)
42
+ return answer
43
+
44
+ # Define the Gradio interface
45
+ iface = gr.Interface(
46
+ fn=gradio_predict,
47
+ inputs=[gr.Image(type="pil", label="Upload or Drag an Image"), gr.Textbox(label="Question", placeholder="e.g. What are the colors of the bus in the image?", scale=4)],
48
+ outputs=gr.TextArea(label="Answer"),
49
+ title="Sparrow-based Visual Question Answering",
50
+ description="An interactive chat model that can answer questions about images.",
51
+ )
52
+
53
+ # Launch the app
54
+ iface.queue().launch(debug=True)