Instant-Image / app.py
KingNish's picture
Update app.py
e4c864f verified
raw
history blame
5.26 kB
import spaces
import argparse
import os
import time
from os import path
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
import gradio as gr
import torch
from diffusers import StableDiffusionXLPipeline, LCMScheduler
# from scheduling_tcd import TCDScheduler
torch.backends.cuda.matmul.allow_tf32 = True
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
if not path.exists(cache_path):
os.makedirs(cache_path, exist_ok=True)
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.bfloat16)
pipe.to(device="cuda", dtype=torch.bfloat16)
unet_state = load_file(hf_hub_download("ByteDance/Hyper-SD", "Hyper-SDXL-1step-Unet.safetensors"), device="cuda")
pipe.unet.load_state_dict(unet_state)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, timestep_spacing ="trailing")
with gr.Blocks() as demo:
gr.Markdown(DESCRIPTION)
with gr.Row(equal_height=False):
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(label="Result", columns=NUM_IMAGES_PER_PROMPT, show_label=False)
with gr.Accordion("Advanced options", open=False):
with gr.Group():
with gr.Row():
with seed = gr.Slider(
label="Seed",
minimum=0,
maximum=99999999,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row(visible=True):
width = gr.Slider(
label="Width",
minimum=256,
maximum=8192,
step=32,
value=2048,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=8192,
step=32,
value=2048,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, seed],
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, 99999999)
return seed
@spaces.GPU(duration=10)
def process_image( height, width, prompt, seed, randomize_seed):
global pipe
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
return pipe(
prompt=str,,
num_inference_steps=1,
guidance_scale=0.,
height=int(height),
width=int(width),
timesteps=[800],
randomize_seed: bool = False,
use_resolution_binning: bool = True,
progress=gr.Progress(track_tqdm=True),
).images
seed = int(randomize_seed_fn(seed, randomize_seed))
generator = torch.Generator().manual_seed(seed)
reactive_controls = [ height, width, prompt, seed, randomize_seed]
btn.click(process_image, inputs=reactive_controls, outputs=[output])
if __name__ == "__main__":
demo.launch()
DESCRIPTION = """ # Instant Image
### Super fast text to Image Generator.
### <span style='color: red;'>You may change the steps from 4 to 8, if you didn't get satisfied results.
### First Image processing takes time then images generate faster.
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
examples = [
"A Monkey with a happy face in the Sahara desert.",
"Eiffel Tower was Made up of ICE.",
"Color photo of a corgi made of transparent glass, standing on the riverside in Yosemite National Park.",
"A close-up photo of a woman. She wore a blue coat with a gray dress underneath and has blue eyes.",
"A litter of golden retriever puppies playing in the snow. Their heads pop out of the snow, covered in.",
"an astronaut sitting in a diner, eating fries, cinematic, analog film",
]