Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
from __future__ import annotations | |
import argparse | |
import os | |
import sys | |
import random | |
import gradio as gr | |
import numpy as np | |
import uuid | |
import spaces | |
from diffusers import ConsistencyDecoderVAE, DPMSolverMultistepScheduler, Transformer2DModel, AutoencoderKL | |
import torch | |
from typing import Tuple | |
from datetime import datetime | |
from peft import PeftModel | |
from diffusers_patches import pixart_sigma_init_patched_inputs, PixArtSigmaPipeline | |
DESCRIPTION = """ # Instant Image | |
### Super fast text to Image Generator. | |
### <span style='color: red;'>You may change the steps from 9 to 15, if you didn't get satisfied results. | |
### First Image processing takes time (Because model is loading) then Lighting fast image generated. | |
""" | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
MAX_SEED = np.iinfo(np.int32).max | |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1" | |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "6000")) | |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" | |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" | |
PORT = int(os.getenv("DEMO_PORT", "15432")) | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
style_list = [ | |
{ | |
"name": "(No style)", | |
"prompt": "{prompt}", | |
"negative_prompt": "", | |
}, | |
{ | |
"name": "Cinematic", | |
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", | |
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured", | |
}, | |
{ | |
"name": "Realistic", | |
"prompt": "Photorealistic {prompt} . Ulta-realistic, professional, 4k, highly detailed", | |
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, disfigured", | |
}, | |
{ | |
"name": "Anime", | |
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed", | |
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast", | |
}, | |
{ | |
"name": "Manga", | |
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style", | |
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style", | |
}, | |
{ | |
"name": "Digital Art", | |
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed", | |
"negative_prompt": "photo, photorealistic, realism, ugly", | |
}, | |
{ | |
"name": "Pixel art", | |
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics", | |
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic", | |
}, | |
{ | |
"name": "Fantasy art", | |
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy", | |
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white", | |
}, | |
{ | |
"name": "Neonpunk", | |
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional", | |
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured", | |
}, | |
{ | |
"name": "3D Model", | |
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting", | |
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting", | |
}, | |
] | |
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} | |
STYLE_NAMES = list(styles.keys()) | |
DEFAULT_STYLE_NAME = "(No style)" | |
SCHEDULE_NAME = ["DPM-Solver"] | |
DEFAULT_SCHEDULE_NAME = "DPM-Solver" | |
NUM_IMAGES_PER_PROMPT = 1 | |
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]: | |
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) | |
if not negative: | |
negative = "" | |
return p.replace("{prompt}", positive), n + negative | |
if torch.cuda.is_available(): | |
weight_dtype = torch.float16 | |
T5_token_max_length = 300 | |
# tmp patches for diffusers PixArtSigmaPipeline Implementation | |
print( | |
"Changing _init_patched_inputs method of diffusers.models.Transformer2DModel " | |
"using scripts.diffusers_patches.pixart_sigma_init_patched_inputs") | |
setattr(Transformer2DModel, '_init_patched_inputs', pixart_sigma_init_patched_inputs) | |
transformer = Transformer2DModel.from_pretrained( | |
"PixArt-alpha/PixArt-Sigma-XL-2-1024-MS", | |
subfolder='transformer', | |
torch_dtype=weight_dtype, | |
) | |
pipe = PixArtSigmaPipeline.from_pretrained( | |
"PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers", | |
transformer=transformer, | |
torch_dtype=weight_dtype, | |
use_safetensors=True, | |
) | |
if os.getenv('CONSISTENCY_DECODER', False): | |
print("Using DALL-E 3 Consistency Decoder") | |
pipe.vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16) | |
if ENABLE_CPU_OFFLOAD: | |
pipe.enable_model_cpu_offload() | |
else: | |
pipe.to(device) | |
print("Loaded on Device!") | |
# speed-up T5 | |
pipe.text_encoder.to_bettertransformer() | |
if USE_TORCH_COMPILE: | |
pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True) | |
print("Model Compiled!") | |
def save_image(img): | |
unique_name = str(uuid.uuid4()) + ".png" | |
img.save(unique_name) | |
return unique_name | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def generate( | |
prompt: str, | |
negative_prompt: str = "", | |
style: str = DEFAULT_STYLE_NAME, | |
use_negative_prompt: bool = False, | |
num_imgs: int = 1, | |
seed: int = 0, | |
width: int = 400, | |
height: int = 400, | |
schedule: str = 'DPM-Solver', | |
dpms_guidance_scale: float = 3.5, | |
dpms_inference_steps: int = 9, | |
randomize_seed: bool = False, | |
use_resolution_binning: bool = True, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
seed = int(randomize_seed_fn(seed, randomize_seed)) | |
generator = torch.Generator().manual_seed(seed) | |
if schedule == 'DPM-Solver': | |
if not isinstance(pipe.scheduler, DPMSolverMultistepScheduler): | |
pipe.scheduler = DPMSolverMultistepScheduler() | |
num_inference_steps = dpms_inference_steps | |
guidance_scale = dpms_guidance_scale | |
else: | |
raise ValueError(f"Unknown schedule: {schedule}") | |
if not use_negative_prompt: | |
negative_prompt = None # type: ignore | |
prompt, negative_prompt = apply_style(style, prompt, negative_prompt) | |
images = pipe( | |
prompt=prompt, | |
width=width, | |
height=height, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
num_images_per_prompt=num_imgs, | |
use_resolution_binning=use_resolution_binning, | |
output_type="pil", | |
max_sequence_length=T5_token_max_length, | |
).images | |
image_paths = [save_image(img) for img in images] | |
print(image_paths) | |
return image_paths, seed | |
examples = [ | |
"A Monkey with a happy face in the Sahara desert.", | |
"Eiffel Tower was Made up of ICE to look like a cloud, with the bell tower at the top of the building.", | |
"3D small, round, fluffy creature with big, expressive eyes explores a vibrant, enchanted forest. The creature, a whimsical blend of a rabbit and a squirrel, has soft blue fur and a bushy, striped tail. It hops along a sparkling stream, its eyes wide with wonder. The forest is alive with magical elements: flowers that glow and change colors, trees with leaves in shades of purple and silver, and small floating lights that resemble fireflies. The creature stops to interact playfully with a group of tiny, fairy-like beings dancing around a mushroom ring. The creature looks up in awe at a large, glowing tree that seems to be the heart of the forest.", | |
"Color photo of a corgi made of transparent glass, standing on the riverside in Yosemite National Park.", | |
"A close-up photo of a woman. She wore a blue coat with a gray dress underneath. She has blue eyes and blond hair, and wears a pair of earrings. Behind are blurred city buildings and streets.", | |
"A litter of golden retriever puppies playing in the snow. Their heads pop out of the snow, covered in.", | |
"a handsome young boy in the middle with sky color background wearing eye glasses, it's super detailed with anime style, it's a portrait with delicated eyes and nice looking face", | |
"an astronaut sitting in a diner, eating fries, cinematic, analog film", | |
"Pirate ship trapped in a cosmic maelstrom nebula, rendered in cosmic beach whirlpool engine, volumetric lighting, spectacular, ambient lights, intricate detail.", | |
"professional portrait photo of an anthropomorphic cat wearing fancy gentleman hat and jacket walking in autumn forest.", | |
] | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.DuplicateButton( | |
value="Duplicate Space for private use", | |
elem_id="duplicate-button", | |
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", | |
) | |
with gr.Row(equal_height=False): | |
with gr.Group(): | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Gallery(label="Result", columns=NUM_IMAGES_PER_PROMPT, show_label=False) | |
# with gr.Accordion("Advanced options", open=False): | |
with gr.Group(): | |
with gr.Row(): | |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False, visible=True) | |
with gr.Row(visible=True): | |
schedule = gr.Radio( | |
show_label=True, | |
container=True, | |
interactive=True, | |
choices=SCHEDULE_NAME, | |
value=DEFAULT_SCHEDULE_NAME, | |
label="Sampler Schedule", | |
visible=True, | |
) | |
num_imgs = gr.Slider( | |
label="Num Images", | |
minimum=1, | |
maximum=8, | |
step=1, | |
value=1, | |
) | |
style_selection = gr.Radio( | |
show_label=True, | |
container=True, | |
interactive=True, | |
choices=STYLE_NAMES, | |
value=DEFAULT_STYLE_NAME, | |
label="Image Style", | |
) | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=True, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(visible=True): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=400, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=400, | |
) | |
with gr.Row(): | |
dpms_guidance_scale = gr.Slider( | |
label="Temprature", | |
minimum=3, | |
maximum=4, | |
step=0.1, | |
value=3.5, | |
) | |
dpms_inference_steps = gr.Slider( | |
label="Steps", | |
minimum=5, | |
maximum=25, | |
step=1, | |
value=9, | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=prompt, | |
outputs=[result, seed], | |
fn=generate, | |
cache_examples=CACHE_EXAMPLES, | |
) | |
use_negative_prompt.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_negative_prompt, | |
outputs=negative_prompt, | |
api_name=False, | |
) | |
gr.on( | |
triggers=[ | |
prompt.submit, | |
negative_prompt.submit, | |
run_button.click, | |
], | |
fn=generate, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
style_selection, | |
use_negative_prompt, | |
num_imgs, | |
seed, | |
width, | |
height, | |
schedule, | |
dpms_guidance_scale, | |
dpms_inference_steps, | |
randomize_seed, | |
], | |
outputs=[result, seed], | |
api_name="run", | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() | |
# demo.queue(max_size=20).launch(server_name="0.0.0.0", server_port=11900, debug=True) | |