Mageia commited on
Commit
8ec1357
·
unverified ·
1 Parent(s): 4dcdb35

add: pdf2images

Browse files
Files changed (3) hide show
  1. app-ocr.py +149 -0
  2. app.py +29 -130
  3. requirements.txt +1 -0
app-ocr.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import base64
2
+ import io
3
+ import os
4
+ import shutil
5
+ import time
6
+ import uuid
7
+ from pathlib import Path
8
+
9
+ # import numpy as np
10
+ # import tempfile
11
+ # from PIL import Image
12
+ import gradio as gr
13
+ from modelscope import AutoModel, AutoTokenizer
14
+
15
+ UPLOAD_FOLDER = "./uploads"
16
+ RESULTS_FOLDER = "./results"
17
+
18
+
19
+ tokenizer = AutoTokenizer.from_pretrained("stepfun-ai/GOT-OCR2_0", trust_remote_code=True)
20
+ model = AutoModel.from_pretrained("stepfun-ai/GOT-OCR2_0", trust_remote_code=True, low_cpu_mem_usage=True, device_map="cuda", use_safetensors=True)
21
+ model = model.eval().cuda()
22
+
23
+ for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]:
24
+ if not os.path.exists(folder):
25
+ os.makedirs(folder)
26
+
27
+
28
+ def image_to_base64(image):
29
+ buffered = io.BytesIO()
30
+ image.save(buffered, format="PNG")
31
+ return base64.b64encode(buffered.getvalue()).decode()
32
+
33
+
34
+ def run_GOT(image, got_mode, fine_grained_mode="", ocr_color="", ocr_box=""):
35
+ unique_id = str(uuid.uuid4())
36
+ image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.png")
37
+ result_path = os.path.join(RESULTS_FOLDER, f"{unique_id}.html")
38
+
39
+ shutil.copy(image, image_path)
40
+
41
+ try:
42
+ if got_mode == "plain texts OCR":
43
+ res = model.chat(tokenizer, image_path, ocr_type="ocr")
44
+ return res, None
45
+ elif got_mode == "format texts OCR":
46
+ res = model.chat(tokenizer, image_path, ocr_type="format", render=True, save_render_file=result_path)
47
+ elif got_mode == "plain multi-crop OCR":
48
+ res = model.chat_crop(tokenizer, image_path, ocr_type="ocr")
49
+ return res, None
50
+ elif got_mode == "format multi-crop OCR":
51
+ res = model.chat_crop(tokenizer, image_path, ocr_type="format", render=True, save_render_file=result_path)
52
+ elif got_mode == "plain fine-grained OCR":
53
+ res = model.chat(tokenizer, image_path, ocr_type="ocr", ocr_box=ocr_box, ocr_color=ocr_color)
54
+ return res, None
55
+ elif got_mode == "format fine-grained OCR":
56
+ res = model.chat(tokenizer, image_path, ocr_type="format", ocr_box=ocr_box, ocr_color=ocr_color, render=True, save_render_file=result_path)
57
+
58
+ # res_markdown = f"$$ {res} $$"
59
+ res_markdown = res
60
+
61
+ if "format" in got_mode and os.path.exists(result_path):
62
+ with open(result_path, "r") as f:
63
+ html_content = f.read()
64
+ encoded_html = base64.b64encode(html_content.encode("utf-8")).decode("utf-8")
65
+ iframe_src = f"data:text/html;base64,{encoded_html}"
66
+ iframe = f'<iframe src="{iframe_src}" width="100%" height="600px"></iframe>'
67
+ download_link = f'<a href="data:text/html;base64,{encoded_html}" download="result_{unique_id}.html">Download Full Result</a>'
68
+ return res_markdown, f"{download_link}<br>{iframe}"
69
+ else:
70
+ return res_markdown, None
71
+ except Exception as e:
72
+ return f"Error: {str(e)}", None
73
+ finally:
74
+ if os.path.exists(image_path):
75
+ os.remove(image_path)
76
+
77
+
78
+ def task_update(task):
79
+ if "fine-grained" in task:
80
+ return [
81
+ gr.update(visible=True),
82
+ gr.update(visible=False),
83
+ gr.update(visible=False),
84
+ ]
85
+ else:
86
+ return [
87
+ gr.update(visible=False),
88
+ gr.update(visible=False),
89
+ gr.update(visible=False),
90
+ ]
91
+
92
+
93
+ def fine_grained_update(task):
94
+ if task == "box":
95
+ return [
96
+ gr.update(visible=False, value=""),
97
+ gr.update(visible=True),
98
+ ]
99
+ elif task == "color":
100
+ return [
101
+ gr.update(visible=True),
102
+ gr.update(visible=False, value=""),
103
+ ]
104
+
105
+
106
+ def cleanup_old_files():
107
+ current_time = time.time()
108
+ for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]:
109
+ for file_path in Path(folder).glob("*"):
110
+ if current_time - file_path.stat().st_mtime > 3600: # 1 hour
111
+ file_path.unlink()
112
+
113
+
114
+ with gr.Blocks() as demo:
115
+ with gr.Row():
116
+ with gr.Column():
117
+ image_input = gr.Image(type="filepath", label="上传图片")
118
+ task_dropdown = gr.Dropdown(
119
+ choices=[
120
+ "plain texts OCR",
121
+ "format texts OCR",
122
+ "plain multi-crop OCR",
123
+ "format multi-crop OCR",
124
+ "plain fine-grained OCR",
125
+ "format fine-grained OCR",
126
+ ],
127
+ label="选择GOT模式",
128
+ value="plain texts OCR",
129
+ )
130
+ fine_grained_dropdown = gr.Dropdown(choices=["box", "color"], label="fine-grained type", visible=False)
131
+ color_dropdown = gr.Dropdown(choices=["red", "green", "blue"], label="color list", visible=False)
132
+ box_input = gr.Textbox(label="input box: [x1,y1,x2,y2]", placeholder="e.g., [0,0,100,100]", visible=False)
133
+ submit_button = gr.Button("Submit")
134
+
135
+ with gr.Column():
136
+ ocr_result = gr.Textbox(label="GOT output")
137
+
138
+ with gr.Column():
139
+ gr.Markdown("**如果选择带格式的模式,mathpix结果将自动呈现如下:**")
140
+ html_result = gr.HTML(label="rendered html", show_label=True)
141
+
142
+ task_dropdown.change(task_update, inputs=[task_dropdown], outputs=[fine_grained_dropdown, color_dropdown, box_input])
143
+ fine_grained_dropdown.change(fine_grained_update, inputs=[fine_grained_dropdown], outputs=[color_dropdown, box_input])
144
+
145
+ submit_button.click(run_GOT, inputs=[image_input, task_dropdown, fine_grained_dropdown, color_dropdown, box_input], outputs=[ocr_result, html_result])
146
+
147
+ if __name__ == "__main__":
148
+ cleanup_old_files()
149
+ demo.launch()
app.py CHANGED
@@ -1,150 +1,49 @@
1
- import base64
2
- import io
3
  import os
4
- import shutil
5
- import time
6
  import uuid
7
- from pathlib import Path
8
 
 
9
  import gradio as gr
10
- from modelscope import AutoModel, AutoTokenizer
11
-
12
- # import numpy as np
13
- # import tempfile
14
- # from PIL import Image
15
-
16
-
17
- tokenizer = AutoTokenizer.from_pretrained("stepfun-ai/GOT-OCR2_0", trust_remote_code=True)
18
- model = AutoModel.from_pretrained("stepfun-ai/GOT-OCR2_0", trust_remote_code=True, low_cpu_mem_usage=True, device_map="cuda", use_safetensors=True)
19
- model = model.eval().cuda()
20
 
21
  UPLOAD_FOLDER = "./uploads"
22
  RESULTS_FOLDER = "./results"
23
 
24
- for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]:
25
- if not os.path.exists(folder):
26
- os.makedirs(folder)
27
-
28
-
29
- def image_to_base64(image):
30
- buffered = io.BytesIO()
31
- image.save(buffered, format="PNG")
32
- return base64.b64encode(buffered.getvalue()).decode()
33
-
34
-
35
- def run_GOT(image, got_mode, fine_grained_mode="", ocr_color="", ocr_box=""):
36
- unique_id = str(uuid.uuid4())
37
- image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.png")
38
- result_path = os.path.join(RESULTS_FOLDER, f"{unique_id}.html")
39
 
40
- shutil.copy(image, image_path)
 
 
 
 
 
 
 
 
 
41
 
42
- try:
43
- if got_mode == "plain texts OCR":
44
- res = model.chat(tokenizer, image_path, ocr_type="ocr")
45
- return res, None
46
- elif got_mode == "format texts OCR":
47
- res = model.chat(tokenizer, image_path, ocr_type="format", render=True, save_render_file=result_path)
48
- elif got_mode == "plain multi-crop OCR":
49
- res = model.chat_crop(tokenizer, image_path, ocr_type="ocr")
50
- return res, None
51
- elif got_mode == "format multi-crop OCR":
52
- res = model.chat_crop(tokenizer, image_path, ocr_type="format", render=True, save_render_file=result_path)
53
- elif got_mode == "plain fine-grained OCR":
54
- res = model.chat(tokenizer, image_path, ocr_type="ocr", ocr_box=ocr_box, ocr_color=ocr_color)
55
- return res, None
56
- elif got_mode == "format fine-grained OCR":
57
- res = model.chat(tokenizer, image_path, ocr_type="format", ocr_box=ocr_box, ocr_color=ocr_color, render=True, save_render_file=result_path)
58
 
59
- # res_markdown = f"$$ {res} $$"
60
- res_markdown = res
 
 
 
 
61
 
62
- if "format" in got_mode and os.path.exists(result_path):
63
- with open(result_path, "r") as f:
64
- html_content = f.read()
65
- encoded_html = base64.b64encode(html_content.encode("utf-8")).decode("utf-8")
66
- iframe_src = f"data:text/html;base64,{encoded_html}"
67
- iframe = f'<iframe src="{iframe_src}" width="100%" height="600px"></iframe>'
68
- download_link = f'<a href="data:text/html;base64,{encoded_html}" download="result_{unique_id}.html">Download Full Result</a>'
69
- return res_markdown, f"{download_link}<br>{iframe}"
70
- else:
71
- return res_markdown, None
72
- except Exception as e:
73
- return f"Error: {str(e)}", None
74
- finally:
75
- if os.path.exists(image_path):
76
- os.remove(image_path)
77
 
 
 
 
78
 
79
- def task_update(task):
80
- if "fine-grained" in task:
81
- return [
82
- gr.update(visible=True),
83
- gr.update(visible=False),
84
- gr.update(visible=False),
85
- ]
86
- else:
87
- return [
88
- gr.update(visible=False),
89
- gr.update(visible=False),
90
- gr.update(visible=False),
91
- ]
92
 
93
-
94
- def fine_grained_update(task):
95
- if task == "box":
96
- return [
97
- gr.update(visible=False, value=""),
98
- gr.update(visible=True),
99
- ]
100
- elif task == "color":
101
- return [
102
- gr.update(visible=True),
103
- gr.update(visible=False, value=""),
104
- ]
105
-
106
-
107
- def cleanup_old_files():
108
- current_time = time.time()
109
- for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]:
110
- for file_path in Path(folder).glob("*"):
111
- if current_time - file_path.stat().st_mtime > 3600: # 1 hour
112
- file_path.unlink()
113
 
114
 
115
  with gr.Blocks() as demo:
116
- with gr.Row():
117
- with gr.Column():
118
- image_input = gr.Image(type="filepath", label="上传图片")
119
- task_dropdown = gr.Dropdown(
120
- choices=[
121
- "plain texts OCR",
122
- "format texts OCR",
123
- "plain multi-crop OCR",
124
- "format multi-crop OCR",
125
- "plain fine-grained OCR",
126
- "format fine-grained OCR",
127
- ],
128
- label="选择GOT模式",
129
- value="plain texts OCR",
130
- )
131
- fine_grained_dropdown = gr.Dropdown(choices=["box", "color"], label="fine-grained type", visible=False)
132
- color_dropdown = gr.Dropdown(choices=["red", "green", "blue"], label="color list", visible=False)
133
- box_input = gr.Textbox(label="input box: [x1,y1,x2,y2]", placeholder="e.g., [0,0,100,100]", visible=False)
134
- submit_button = gr.Button("Submit")
135
-
136
- with gr.Column():
137
- ocr_result = gr.Textbox(label="GOT output")
138
-
139
- with gr.Column():
140
- gr.Markdown("**如果选择带格式的模式,mathpix结果将自动呈现如下:**")
141
- html_result = gr.HTML(label="rendered html", show_label=True)
142
-
143
- task_dropdown.change(task_update, inputs=[task_dropdown], outputs=[fine_grained_dropdown, color_dropdown, box_input])
144
- fine_grained_dropdown.change(fine_grained_update, inputs=[fine_grained_dropdown], outputs=[color_dropdown, box_input])
145
 
146
- submit_button.click(run_GOT, inputs=[image_input, task_dropdown, fine_grained_dropdown, color_dropdown, box_input], outputs=[ocr_result, html_result])
 
147
 
148
- if __name__ == "__main__":
149
- cleanup_old_files()
150
- demo.launch()
 
 
 
1
  import os
 
 
2
  import uuid
 
3
 
4
+ import fitz # PyMuPDF
5
  import gradio as gr
6
+ from PIL import Image
 
 
 
 
 
 
 
 
 
7
 
8
  UPLOAD_FOLDER = "./uploads"
9
  RESULTS_FOLDER = "./results"
10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
+ def pdf_to_images(pdf_path):
13
+ images = []
14
+ pdf_document = fitz.open(pdf_path)
15
+ for page_num in range(len(pdf_document)):
16
+ page = pdf_document.load_page(page_num)
17
+ pix = page.get_pixmap()
18
+ img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
19
+ images.append(img)
20
+ pdf_document.close()
21
+ return images
22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
+ def process_pdf(pdf_file):
25
+ temp_pdf_path = os.path.join(UPLOAD_FOLDER, f"{uuid.uuid4()}.pdf")
26
+ pdf_file.save(temp_pdf_path)
27
+ images = pdf_to_images(temp_pdf_path)
28
+ os.remove(temp_pdf_path)
29
+ return images
30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
+ def display_images(images):
33
+ image_elements = [gr.Image(value=img, type="pil") for img in images]
34
+ return gr.Gallery(value=image_elements)
35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
+ def on_image_select(image):
38
+ return image
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
 
41
  with gr.Blocks() as demo:
42
+ pdf_input = gr.File(label="上传PDF文件")
43
+ image_gallery = gr.Gallery(label="PDF页面预览", columns=3, height="auto")
44
+ selected_image = gr.Image(label="选中的图片", type="pil")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
 
46
+ pdf_input.upload(fn=process_pdf, inputs=pdf_input, outputs=image_gallery)
47
+ image_gallery.select(fn=on_image_select, inputs=image_gallery, outputs=selected_image)
48
 
49
+ # 这里可以添加OCR转换功能的相关组件和逻辑
 
 
requirements.txt CHANGED
@@ -1,3 +1,4 @@
 
1
  verovio
2
  gradio
3
  numpy
 
1
+ PyMuPDF
2
  verovio
3
  gradio
4
  numpy