MKgoud's picture
with examples
e68a4c0 verified
import streamlit as st
from ultralytics import YOLO
import numpy as np
import cv2
from PIL import Image
# Model labels
model1Labels = {0: 'single_number_plate', 1: 'double_number_plate'}
model2Labels = {
0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9', 10: 'A', 11: 'B', 12: 'C',
13: 'D', 14: 'E', 15: 'F', 16: 'G', 17: 'H', 18: 'I', 19: 'J', 20: 'K', 21: 'L', 22: 'M', 23: 'N', 24: 'O',
25: 'P', 26: 'Q', 27: 'R', 28: 'S', 29: 'T', 30: 'U', 31: 'V', 32: 'W', 33: 'X', 34: 'Y', 35: 'Z'
}
# Load models
model = YOLO("models/LP-detection.pt")
model2 = YOLO("models/Charcter-LP.pt")
def prediction(image):
result = model.predict(source=image, conf=0.5)
boxes = result[0].boxes
height = boxes.xywh
crd = boxes.data
n = len(crd)
lp_number = []
img_lp_final = None
for i in range(n):
ht = int(height[i][3])
c = int(crd[i][5])
xmin = int(crd[i][0])
ymin = int(crd[i][1])
xmax = int(crd[i][2])
ymax = int(crd[i][3])
img_lp = image[ymin:ymax, xmin:xmax]
img_lp_final = img_lp.copy() # Store the cropped image for display
cv2.rectangle(image, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
h = np.median(ht)
# Second Model Prediction
result2 = model2.predict(source=img_lp, conf=0.25)
boxes_ocr = result2[0].boxes
data2 = boxes_ocr.data
n2 = len(data2)
xaxis0, xaxis11, xaxis12 = [], [], []
label0, label11, label12 = [], [], []
numberPlate = ""
if c == 0: # Single line license plate
for i in range(n2):
x = int(data2[i][2])
xaxis0.append(x)
l = int(data2[i][5])
label0.append(l)
# Sort characters by x-axis for single line
sorted_labels = [label0[i] for i in np.argsort(xaxis0)]
numberPlate = ''.join([model2Labels.get(l) for l in sorted_labels])
lp_number.append(numberPlate)
elif c == 1: # Double line license plate
for i in range(n2):
x = int(data2[i][0])
y = int(data2[i][3])
l = int(data2[i][5])
if y < (h / 2):
xaxis11.append(x)
label11.append(l)
else:
xaxis12.append(x)
label12.append(l)
# Sort characters by x-axis for double line (upper and lower separately)
sorted_labels11 = [label11[i] for i in np.argsort(xaxis11)]
sorted_labels12 = [label12[i] for i in np.argsort(xaxis12)]
numberPlate = ''.join([model2Labels.get(l) for l in sorted_labels11 + sorted_labels12])
lp_number.append(numberPlate)
return lp_number, img_lp_final
st.title('License Plate Recognition πŸš—')
st.header('Upload an image of a license plate to get the License number.')
# Define example images (update with actual paths)
example_images = {
"Car ": "test/audiR8V10.jpg",
"Car 2": "test/c7.jpg",
"Car 3": "test/c4.jpg",
"CCTV B/W": "test/cctv img plate.jpg",
"Bike": "test/BikeNumberPlate.jpg",
"Bus": "test/bus.jpg",
}
# File uploader
uploaded_file = st.file_uploader("Choose an image...", type="jpg")
c1, c2 = st.columns(2)
for name, path in example_images.items():
with c1:
example_img = Image.open(path)
image = None
if uploaded_file is not None:
image = np.array(Image.open(uploaded_file))
else:
st.header("Or choose an example image from below dropdown:")
selected_example = st.selectbox("", list(example_images.keys()))
if selected_example:
image = np.array(Image.open(example_images[selected_example]))
if image is not None:
c1, c2, c3 = st.columns(3)
with c1:
st.image(image, caption='Uploaded Image', use_column_width=True)
license_plate_text, img_lp = prediction(image)
with c2:
if img_lp is not None:
st.image(img_lp, caption='Cropped License Plate', use_column_width=True)
else:
st.write('No License Plate Detected')
with c3:
st.success(', '.join(license_plate_text))
st.write('License Plate Text')