|
import streamlit as st |
|
from ultralytics import YOLO |
|
import numpy as np |
|
import cv2 |
|
from PIL import Image |
|
|
|
|
|
model1Labels = {0: 'single_number_plate', 1: 'double_number_plate'} |
|
|
|
model2Labels = { |
|
0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9', 10: 'A', 11: 'B', 12: 'C', |
|
13: 'D', 14: 'E', 15: 'F', 16: 'G', 17: 'H', 18: 'I', 19: 'J', 20: 'K', 21: 'L', 22: 'M', 23: 'N', 24: 'O', |
|
25: 'P', 26: 'Q', 27: 'R', 28: 'S', 29: 'T', 30: 'U', 31: 'V', 32: 'W', 33: 'X', 34: 'Y', 35: 'Z' |
|
} |
|
|
|
|
|
model = YOLO("models/LP-detection.pt") |
|
model2 = YOLO("models/Charcter-LP.pt") |
|
|
|
def prediction(image): |
|
result = model.predict(source=image, conf=0.5) |
|
boxes = result[0].boxes |
|
height = boxes.xywh |
|
crd = boxes.data |
|
|
|
n = len(crd) |
|
lp_number = [] |
|
img_lp_final = None |
|
|
|
for i in range(n): |
|
ht = int(height[i][3]) |
|
c = int(crd[i][5]) |
|
|
|
xmin = int(crd[i][0]) |
|
ymin = int(crd[i][1]) |
|
xmax = int(crd[i][2]) |
|
ymax = int(crd[i][3]) |
|
|
|
img_lp = image[ymin:ymax, xmin:xmax] |
|
img_lp_final = img_lp.copy() |
|
cv2.rectangle(image, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2) |
|
|
|
h = np.median(ht) |
|
|
|
|
|
result2 = model2.predict(source=img_lp, conf=0.25) |
|
boxes_ocr = result2[0].boxes |
|
data2 = boxes_ocr.data |
|
|
|
n2 = len(data2) |
|
xaxis0, xaxis11, xaxis12 = [], [], [] |
|
label0, label11, label12 = [], [], [] |
|
numberPlate = "" |
|
|
|
if c == 0: |
|
for i in range(n2): |
|
x = int(data2[i][2]) |
|
xaxis0.append(x) |
|
l = int(data2[i][5]) |
|
label0.append(l) |
|
|
|
|
|
sorted_labels = [label0[i] for i in np.argsort(xaxis0)] |
|
numberPlate = ''.join([model2Labels.get(l) for l in sorted_labels]) |
|
lp_number.append(numberPlate) |
|
|
|
elif c == 1: |
|
for i in range(n2): |
|
x = int(data2[i][0]) |
|
y = int(data2[i][3]) |
|
l = int(data2[i][5]) |
|
if y < (h / 2): |
|
xaxis11.append(x) |
|
label11.append(l) |
|
else: |
|
xaxis12.append(x) |
|
label12.append(l) |
|
|
|
|
|
sorted_labels11 = [label11[i] for i in np.argsort(xaxis11)] |
|
sorted_labels12 = [label12[i] for i in np.argsort(xaxis12)] |
|
numberPlate = ''.join([model2Labels.get(l) for l in sorted_labels11 + sorted_labels12]) |
|
lp_number.append(numberPlate) |
|
|
|
return lp_number, img_lp_final |
|
|
|
st.title('License Plate Recognition π') |
|
st.header('Upload an image of a license plate to get the License number.') |
|
|
|
|
|
example_images = { |
|
"Car ": "test/audiR8V10.jpg", |
|
"Car 2": "test/c7.jpg", |
|
"Car 3": "test/c4.jpg", |
|
"CCTV B/W": "test/cctv img plate.jpg", |
|
"Bike": "test/BikeNumberPlate.jpg", |
|
"Bus": "test/bus.jpg", |
|
} |
|
|
|
|
|
uploaded_file = st.file_uploader("Choose an image...", type="jpg") |
|
|
|
|
|
|
|
c1, c2 = st.columns(2) |
|
for name, path in example_images.items(): |
|
with c1: |
|
example_img = Image.open(path) |
|
|
|
image = None |
|
if uploaded_file is not None: |
|
image = np.array(Image.open(uploaded_file)) |
|
else: |
|
st.header("Or choose an example image from below dropdown:") |
|
selected_example = st.selectbox("", list(example_images.keys())) |
|
if selected_example: |
|
image = np.array(Image.open(example_images[selected_example])) |
|
|
|
if image is not None: |
|
c1, c2, c3 = st.columns(3) |
|
|
|
with c1: |
|
st.image(image, caption='Uploaded Image', use_column_width=True) |
|
|
|
license_plate_text, img_lp = prediction(image) |
|
|
|
with c2: |
|
if img_lp is not None: |
|
st.image(img_lp, caption='Cropped License Plate', use_column_width=True) |
|
else: |
|
st.write('No License Plate Detected') |
|
|
|
with c3: |
|
st.success(', '.join(license_plate_text)) |
|
st.write('License Plate Text') |
|
|