Spaces:
Running
Running
refactor
Browse files- src/content/agent.py +52 -41
- src/content/common.py +3 -3
- src/retrieval.py +2 -2
- style/app_style.css +18 -0
- style/normal_window.css +2 -2
- style/small_window.css +2 -8
src/content/agent.py
CHANGED
@@ -131,6 +131,54 @@ def bottom_input_section():
|
|
131 |
st.session_state.new_prompt = chat_input
|
132 |
|
133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
def conversation_section():
|
135 |
chat_message_container = st.container(height=480)
|
136 |
if st.session_state.ag_audio_array.size:
|
@@ -170,49 +218,12 @@ def conversation_section():
|
|
170 |
with chat_message_container.chat_message("assistant"):
|
171 |
assistant_message = {"role": "assistant", "process": []}
|
172 |
st.session_state.ag_messages.append(assistant_message)
|
173 |
-
|
174 |
-
|
175 |
-
if len(st.session_state.ag_messages) <= 2:
|
176 |
-
relevant_query_indices.append(0)
|
177 |
-
|
178 |
-
relevant_query_indices = list(set(relevant_query_indices).difference(st.session_state.ag_visited_query_indices))
|
179 |
-
|
180 |
-
audio_info = []
|
181 |
-
if relevant_query_indices:
|
182 |
-
with st.status("Thought process...", expanded=True) as status:
|
183 |
-
for idx in relevant_query_indices:
|
184 |
-
error_msg, warnings, response = retrive_response_with_ui(
|
185 |
-
model_name=MODEL_NAMES["with_lora"]["vllm_name"],
|
186 |
-
prompt=STANDARD_QUERIES[idx]["query_text"],
|
187 |
-
array_audio=st.session_state.ag_audio_array,
|
188 |
-
base64_audio=st.session_state.ag_audio_base64,
|
189 |
-
prefix=f"**{STANDARD_QUERIES[idx]['ui_text']}** :speech_balloon: : ",
|
190 |
-
stream=True
|
191 |
-
)
|
192 |
-
audio_info.append(STANDARD_QUERIES[idx]["response_prefix_text"] + response)
|
193 |
-
|
194 |
-
assistant_message["process"].append({
|
195 |
-
"error": error_msg,
|
196 |
-
"warnings": warnings,
|
197 |
-
"content": response
|
198 |
-
})
|
199 |
-
|
200 |
-
status.update(state="complete")
|
201 |
-
|
202 |
-
audio_information_prompt = ""
|
203 |
-
if audio_info:
|
204 |
-
audio_information_prompt = AUDIO_INFO_TEMPLATE.format(
|
205 |
-
audio_information="\n".join(audio_info)
|
206 |
-
)
|
207 |
-
|
208 |
-
prompt = LLM_PROMPT_TEMPLATE.format(
|
209 |
-
user_question=one_time_prompt,
|
210 |
-
audio_information_prompt=audio_information_prompt
|
211 |
-
)
|
212 |
|
213 |
error_msg, warnings, response = retrive_response_with_ui(
|
214 |
model_name=MODEL_NAMES["wo_lora"]["vllm_name"],
|
215 |
-
prompt=
|
216 |
array_audio=st.session_state.ag_audio_array,
|
217 |
base64_audio="",
|
218 |
stream=True,
|
@@ -221,7 +232,7 @@ def conversation_section():
|
|
221 |
|
222 |
assistant_message.update({"error": error_msg, "warnings": warnings, "content": response})
|
223 |
st.session_state.ag_model_messages.extend([
|
224 |
-
{"role": "user", "content":
|
225 |
{"role": "assistant", "content": response}
|
226 |
])
|
227 |
|
|
|
131 |
st.session_state.new_prompt = chat_input
|
132 |
|
133 |
|
134 |
+
def _prepare_final_prompt_with_ui(one_time_prompt):
|
135 |
+
relevant_query_indices = retrieve_relevant_docs(one_time_prompt, STANDARD_QUERIES)
|
136 |
+
if len(st.session_state.ag_messages) <= 2:
|
137 |
+
relevant_query_indices.append(0)
|
138 |
+
|
139 |
+
relevant_query_indices = list(
|
140 |
+
set(relevant_query_indices).difference(st.session_state.ag_visited_query_indices)
|
141 |
+
)
|
142 |
+
|
143 |
+
st.session_state.ag_visited_query_indices.extend(relevant_query_indices)
|
144 |
+
|
145 |
+
if not relevant_query_indices:
|
146 |
+
return LLM_PROMPT_TEMPLATE.format(
|
147 |
+
user_question=one_time_prompt,
|
148 |
+
audio_information_prompt=""
|
149 |
+
)
|
150 |
+
|
151 |
+
audio_info = []
|
152 |
+
with st.status("Thought process...", expanded=True) as status:
|
153 |
+
for idx in relevant_query_indices:
|
154 |
+
error_msg, warnings, response = retrive_response_with_ui(
|
155 |
+
model_name=MODEL_NAMES["with_lora"]["vllm_name"],
|
156 |
+
prompt=STANDARD_QUERIES[idx]["query_text"],
|
157 |
+
array_audio=st.session_state.ag_audio_array,
|
158 |
+
base64_audio=st.session_state.ag_audio_base64,
|
159 |
+
prefix=f"**{STANDARD_QUERIES[idx]['ui_text']}** :speech_balloon: : ",
|
160 |
+
stream=True
|
161 |
+
)
|
162 |
+
audio_info.append(STANDARD_QUERIES[idx]["response_prefix_text"] + response)
|
163 |
+
|
164 |
+
st.session_state.ag_messages[-1]["process"].append({
|
165 |
+
"error": error_msg,
|
166 |
+
"warnings": warnings,
|
167 |
+
"content": response
|
168 |
+
})
|
169 |
+
|
170 |
+
status.update(state="complete")
|
171 |
+
|
172 |
+
audio_information_prompt = AUDIO_INFO_TEMPLATE.format(
|
173 |
+
audio_information="\n".join(audio_info)
|
174 |
+
)
|
175 |
+
|
176 |
+
return LLM_PROMPT_TEMPLATE.format(
|
177 |
+
user_question=one_time_prompt,
|
178 |
+
audio_information_prompt=audio_information_prompt
|
179 |
+
)
|
180 |
+
|
181 |
+
|
182 |
def conversation_section():
|
183 |
chat_message_container = st.container(height=480)
|
184 |
if st.session_state.ag_audio_array.size:
|
|
|
218 |
with chat_message_container.chat_message("assistant"):
|
219 |
assistant_message = {"role": "assistant", "process": []}
|
220 |
st.session_state.ag_messages.append(assistant_message)
|
221 |
+
|
222 |
+
final_prompt = _prepare_final_prompt_with_ui(one_time_prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
|
224 |
error_msg, warnings, response = retrive_response_with_ui(
|
225 |
model_name=MODEL_NAMES["wo_lora"]["vllm_name"],
|
226 |
+
prompt=final_prompt,
|
227 |
array_audio=st.session_state.ag_audio_array,
|
228 |
base64_audio="",
|
229 |
stream=True,
|
|
|
232 |
|
233 |
assistant_message.update({"error": error_msg, "warnings": warnings, "content": response})
|
234 |
st.session_state.ag_model_messages.extend([
|
235 |
+
{"role": "user", "content": final_prompt},
|
236 |
{"role": "assistant", "content": response}
|
237 |
])
|
238 |
|
src/content/common.py
CHANGED
@@ -317,19 +317,19 @@ STANDARD_QUERIES = [
|
|
317 |
},
|
318 |
{
|
319 |
"query_text": "May I know the gender of the speakers",
|
320 |
-
"doc_text": "Please identify
|
321 |
"response_prefix_text": "By analyzing pitch, formants, harmonics, and prosody features, which reflect physiological and speech pattern differences between genders: ",
|
322 |
"ui_text": "gender recognition"
|
323 |
},
|
324 |
{
|
325 |
"query_text": "May I know the nationality of the speakers",
|
326 |
-
"doc_text": "Discover speakers' nationality, country, or the place he is coming from
|
327 |
"response_prefix_text": "By analyzing accent, pronunciation patterns, intonation, rhythm, phoneme usage, and language-specific speech features influenced by cultural and linguistic backgrounds: ",
|
328 |
"ui_text": "accent recognition"
|
329 |
},
|
330 |
{
|
331 |
"query_text": "Can you guess which ethnic group this person is from based on their accent.",
|
332 |
-
"doc_text": "Discover speakers' ethnic group, home country, or the place he is coming from, from
|
333 |
"response_prefix_text": "By analyzing speech features like accent, tone, intonation, phoneme variations, and vocal characteristics influenced by cultural, regional, and linguistic factors: ",
|
334 |
"ui_text": "accent recognition"
|
335 |
},
|
|
|
317 |
},
|
318 |
{
|
319 |
"query_text": "May I know the gender of the speakers",
|
320 |
+
"doc_text": "Please identify the gender of the speaker. For instance, whether is the speaker male or female.",
|
321 |
"response_prefix_text": "By analyzing pitch, formants, harmonics, and prosody features, which reflect physiological and speech pattern differences between genders: ",
|
322 |
"ui_text": "gender recognition"
|
323 |
},
|
324 |
{
|
325 |
"query_text": "May I know the nationality of the speakers",
|
326 |
+
"doc_text": "Discover speakers' nationality, country, or the place he is coming from, from his/her accent, pronunciation patterns, and other language-specific speech features influenced by cultural and linguistic backgrounds.",
|
327 |
"response_prefix_text": "By analyzing accent, pronunciation patterns, intonation, rhythm, phoneme usage, and language-specific speech features influenced by cultural and linguistic backgrounds: ",
|
328 |
"ui_text": "accent recognition"
|
329 |
},
|
330 |
{
|
331 |
"query_text": "Can you guess which ethnic group this person is from based on their accent.",
|
332 |
+
"doc_text": "Discover speakers' ethnic group, home country, or the place he is coming from, from his/her accent, tone, and other vocal characteristics influenced by cultural, regional, and linguistic factors.",
|
333 |
"response_prefix_text": "By analyzing speech features like accent, tone, intonation, phoneme variations, and vocal characteristics influenced by cultural, regional, and linguistic factors: ",
|
334 |
"ui_text": "accent recognition"
|
335 |
},
|
src/retrieval.py
CHANGED
@@ -15,6 +15,6 @@ def load_retriever():
|
|
15 |
def retrieve_relevant_docs(user_question, docs: List[Dict]) -> List[int]:
|
16 |
scores = st.session_state.retriever.compute_score([[user_question, d["doc_text"]] for d in docs], normalize=True)
|
17 |
normalized_scores = np.array(scores) / np.sum(scores)
|
18 |
-
|
19 |
-
selected_indices = np.where((np.array(scores) > 0.
|
20 |
return selected_indices.tolist()
|
|
|
15 |
def retrieve_relevant_docs(user_question, docs: List[Dict]) -> List[int]:
|
16 |
scores = st.session_state.retriever.compute_score([[user_question, d["doc_text"]] for d in docs], normalize=True)
|
17 |
normalized_scores = np.array(scores) / np.sum(scores)
|
18 |
+
|
19 |
+
selected_indices = np.where((np.array(scores) > 0.2) & (normalized_scores > 0.3))[0]
|
20 |
return selected_indices.tolist()
|
style/app_style.css
CHANGED
@@ -1,6 +1,19 @@
|
|
1 |
div[data-testid="stMainBlockContainer"] {
|
2 |
padding-top: 2rem;
|
3 |
padding-bottom: 1rem;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
}
|
5 |
|
6 |
div[data-testid="stMainBlockContainer"] div[data-testid="stAudioInput"]>div {
|
@@ -25,6 +38,11 @@ div[data-testid="stChatMessage"]:has(> div[data-testid="stChatMessageAvatarUser"
|
|
25 |
text-align: right;
|
26 |
}
|
27 |
|
|
|
|
|
|
|
|
|
|
|
28 |
/* audio quick actions */
|
29 |
|
30 |
div[data-testid="stChatMessage"] div[data-testid="stVerticalBlock"]:has( audio[data-testid="stAudio"]) {
|
|
|
1 |
div[data-testid="stMainBlockContainer"] {
|
2 |
padding-top: 2rem;
|
3 |
padding-bottom: 1rem;
|
4 |
+
height: 100%;
|
5 |
+
}
|
6 |
+
|
7 |
+
div[data-testid="stMainBlockContainer"]>div[data-testid="stVerticalBlockBorderWrapper"] {
|
8 |
+
height: 100%;
|
9 |
+
}
|
10 |
+
|
11 |
+
div[data-testid="stMainBlockContainer"]>div[data-testid="stVerticalBlockBorderWrapper"]>div {
|
12 |
+
height: 100%;
|
13 |
+
}
|
14 |
+
|
15 |
+
div[data-testid="stMainBlockContainer"]>div[data-testid="stVerticalBlockBorderWrapper"]>div>div {
|
16 |
+
height: 100%;
|
17 |
}
|
18 |
|
19 |
div[data-testid="stMainBlockContainer"] div[data-testid="stAudioInput"]>div {
|
|
|
38 |
text-align: right;
|
39 |
}
|
40 |
|
41 |
+
div[height="480"][data-testid="stVerticalBlockBorderWrapper"] {
|
42 |
+
height: 100%;
|
43 |
+
min-height: 380px;
|
44 |
+
}
|
45 |
+
|
46 |
/* audio quick actions */
|
47 |
|
48 |
div[data-testid="stChatMessage"] div[data-testid="stVerticalBlock"]:has( audio[data-testid="stAudio"]) {
|
style/normal_window.css
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
@media(min-width:
|
2 |
div[data-testid="stMainBlockContainer"] {
|
3 |
padding-left: 5rem;
|
4 |
-
padding-
|
5 |
}
|
6 |
|
7 |
div[data-testid="stBottomBlockContainer"] {
|
|
|
1 |
+
@media(min-width: 800px) {
|
2 |
div[data-testid="stMainBlockContainer"] {
|
3 |
padding-left: 5rem;
|
4 |
+
padding-right: 5rem;
|
5 |
}
|
6 |
|
7 |
div[data-testid="stBottomBlockContainer"] {
|
style/small_window.css
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
@media(max-width:
|
2 |
div[data-testid="stMainBlockContainer"] {
|
3 |
padding-left: 1rem;
|
4 |
-
padding-
|
5 |
}
|
6 |
|
7 |
div[data-testid="stMainBlockContainer"] div[data-testid="stVerticalBlock"]>div[data-testid="stElementContainer"]:has( div[data-testid="stHeadingWithActionElements"]) {
|
@@ -15,10 +15,4 @@
|
|
15 |
div[data-testid="stSidebarCollapsedControl"] button[data-testid="stBaseButton-headerNoPadding"]::after {
|
16 |
content: "More Use Cases"
|
17 |
}
|
18 |
-
}
|
19 |
-
|
20 |
-
@media (max-width: 916px) and (max-height: 958px) {
|
21 |
-
div[height="480"][data-testid="stVerticalBlockBorderWrapper"] {
|
22 |
-
height: 380px;
|
23 |
-
}
|
24 |
}
|
|
|
1 |
+
@media(max-width: 800px) {
|
2 |
div[data-testid="stMainBlockContainer"] {
|
3 |
padding-left: 1rem;
|
4 |
+
padding-right: 1rem;
|
5 |
}
|
6 |
|
7 |
div[data-testid="stMainBlockContainer"] div[data-testid="stVerticalBlock"]>div[data-testid="stElementContainer"]:has( div[data-testid="stHeadingWithActionElements"]) {
|
|
|
15 |
div[data-testid="stSidebarCollapsedControl"] button[data-testid="stBaseButton-headerNoPadding"]::after {
|
16 |
content: "More Use Cases"
|
17 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
}
|