Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files- app/content.py +145 -132
- app/draw_diagram.py +22 -12
- app/pages.py +184 -55
- app/summarization.py +1 -4
app/content.py
CHANGED
@@ -1,143 +1,156 @@
|
|
1 |
|
2 |
-
|
3 |
-
'
|
4 |
-
'
|
5 |
-
'
|
6 |
-
'
|
7 |
-
'
|
8 |
-
'
|
9 |
-
'
|
10 |
-
'
|
11 |
-
'
|
12 |
-
'
|
13 |
-
'
|
14 |
-
'
|
15 |
-
'
|
16 |
-
'
|
17 |
-
'
|
18 |
-
'
|
19 |
-
'
|
20 |
-
'
|
21 |
-
'
|
22 |
-
'
|
23 |
-
'
|
24 |
-
'
|
25 |
-
'
|
26 |
-
'
|
27 |
-
'
|
28 |
-
'
|
29 |
-
'
|
30 |
-
'
|
31 |
-
'
|
32 |
-
'
|
33 |
-
'
|
34 |
-
'
|
35 |
-
'
|
36 |
-
'
|
37 |
-
'
|
38 |
-
'
|
39 |
-
'
|
40 |
-
'
|
41 |
-
'
|
42 |
-
'
|
43 |
-
'
|
44 |
-
'
|
45 |
-
'
|
46 |
-
'
|
47 |
-
'
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
sqa_datasets = {'CN-College-Listen-MCQ-Test': 'Chinese College English Listening Test, with multiple-choice questions.',
|
73 |
-
'DREAM-TTS-MCQ-Test' : 'DREAM dataset for spoken question-answering, derived from textual data and synthesized speech.',
|
74 |
-
'SLUE-P2-SQA5-Test' : 'Spoken Language Understanding Evaluation (SLUE) dataset, part 2, focused on QA tasks.',
|
75 |
-
'Public-SG-Speech-QA-Test': 'Public dataset for speech-based question answering, gathered from Singapore.',
|
76 |
-
'Spoken-Squad-Test' : 'Spoken SQuAD dataset, based on the textual SQuAD dataset, converted into audio.'
|
77 |
-
}
|
78 |
-
|
79 |
-
sqa_singlish_datasets = {
|
80 |
-
'MNSC-PART3-SQA': 'Multitak National Speech Corpus (MNSC) dataset, Question answering task, Part 3.',
|
81 |
-
'MNSC-PART4-SQA': 'Multitak National Speech Corpus (MNSC) dataset, Question answering task, Part 4.',
|
82 |
-
'MNSC-PART5-SQA': 'Multitak National Speech Corpus (MNSC) dataset, Question answering task, Part 5.',
|
83 |
-
'MNSC-PART6-SQA': 'Multitak National Speech Corpus (MNSC) dataset, Question answering task, Part 6.',
|
84 |
-
}
|
85 |
-
|
86 |
-
si_datasets = {
|
87 |
-
'OpenHermes-Audio-Test': 'Test set for spoken instructions. Synthesized from the OpenHermes dataset.',
|
88 |
-
'ALPACA-Audio-Test' : 'Spoken version of the ALPACA dataset, used for evaluating instruction following in audio.'
|
89 |
-
}
|
90 |
-
|
91 |
-
ac_datasets = {
|
92 |
-
'WavCaps-Test' : 'WavCaps is a dataset for testing audio captioning, where models generate textual descriptions of audio clips.',
|
93 |
-
'AudioCaps-Test': 'AudioCaps dataset, used for generating captions from general audio events.'
|
94 |
-
}
|
95 |
-
|
96 |
-
asqa_datasets = {
|
97 |
-
'Clotho-AQA-Test' : 'Clotho dataset adapted for audio-based question answering, containing audio clips and questions.',
|
98 |
-
'WavCaps-QA-Test' : 'Question-answering test dataset derived from WavCaps, focusing on audio content.',
|
99 |
-
'AudioCaps-QA-Test': 'AudioCaps adapted for question-answering tasks, using audio events as input for Q&A.'
|
100 |
-
}
|
101 |
|
102 |
-
er_datasets = {
|
103 |
-
'IEMOCAP-Emotion-Test': 'Emotion recognition test data from the IEMOCAP dataset, focusing on identifying emotions in speech.',
|
104 |
-
'MELD-Sentiment-Test' : 'Sentiment recognition from speech using the MELD dataset, classifying positive, negative, or neutral sentiments.',
|
105 |
-
'MELD-Emotion-Test' : 'Emotion classification in speech using MELD, detecting specific emotions like happiness, anger, etc.'
|
106 |
}
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
'
|
114 |
-
'
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
-
|
118 |
-
'CoVoST2-EN-ID-test': 'CoVoST 2 dataset for speech translation from English to Indonesian.',
|
119 |
-
'CoVoST2-EN-ZH-test': 'CoVoST 2 dataset for speech translation from English to Chinese.',
|
120 |
-
'CoVoST2-EN-TA-test': 'CoVoST 2 dataset for speech translation from English to Tamil.',
|
121 |
-
'CoVoST2-ID-EN-test': 'CoVoST 2 dataset for speech translation from Indonesian to English.',
|
122 |
-
'CoVoST2-ZH-EN-test': 'CoVoST 2 dataset for speech translation from Chinese to English.',
|
123 |
-
'CoVoST2-TA-EN-test': 'CoVoST 2 dataset for speech translation from Tamil to English.'
|
124 |
-
}
|
125 |
|
126 |
-
cnasr_datasets = {
|
127 |
-
'Aishell-ASR-ZH-Test': 'ASR test dataset for Mandarin Chinese, based on the Aishell dataset.'
|
128 |
-
}
|
129 |
|
130 |
-
MUSIC_MCQ_DATASETS = {
|
131 |
-
'MuChoMusic-Test': 'Test dataset for music understanding, from paper: MuChoMusic: Evaluating Music Understanding in Multimodal Audio-Language Models.'
|
132 |
-
}
|
133 |
|
134 |
-
metrics = {
|
135 |
-
'wer' : 'Word Error Rate (WER), a common metric for ASR evaluation. (The lower, the better)',
|
136 |
-
'llama3_70b_judge_binary': 'Binary evaluation using the LLAMA3-70B model, for tasks requiring a binary outcome. (0-100 based on score 0-1)',
|
137 |
-
'llama3_70b_judge' : 'General evaluation using the LLAMA3-70B model, typically scoring based on subjective judgments. (0-100 based on score 0-5)',
|
138 |
-
'meteor' : 'METEOR, a metric used for evaluating text generation, often used in translation or summarization tasks. (Sensitive to output length)',
|
139 |
-
'bleu' : 'BLEU (Bilingual Evaluation Understudy), another text generation evaluation metric commonly used in machine translation. (Sensitive to output length)',
|
140 |
-
}
|
141 |
|
142 |
metrics_info = {
|
143 |
'wer' : 'Word Error Rate (WER) - The Lower, the better.',
|
|
|
1 |
|
2 |
+
displayname2datasetname = {
|
3 |
+
'LibriSpeech-Clean' : 'librispeech_test_clean',
|
4 |
+
'LibriSpeech-Other' : 'librispeech_test_other',
|
5 |
+
'CommonVoice-15-EN' : 'common_voice_15_en_test',
|
6 |
+
'Peoples-Speech' : 'peoples_speech_test',
|
7 |
+
'GigaSpeech-1' : 'gigaspeech_test',
|
8 |
+
'Earnings-21' : 'earnings21_test',
|
9 |
+
'Earnings-22' : 'earnings22_test',
|
10 |
+
'TED-LIUM-3' : 'tedlium3_test',
|
11 |
+
'TED-LIUM-3-LongForm' : 'tedlium3_long_form_test',
|
12 |
+
'AISHELL-ASR-ZH' : 'aishell_asr_zh_test',
|
13 |
+
'CoVoST2-EN-ID' : 'covost2_en_id_test',
|
14 |
+
'CoVoST2-EN-ZH' : 'covost2_en_zh_test',
|
15 |
+
'CoVoST2-EN-TA' : 'covost2_en_ta_test',
|
16 |
+
'CoVoST2-ID-EN' : 'covost2_id_en_test',
|
17 |
+
'CoVoST2-ZH-EN' : 'covost2_zh_en_test',
|
18 |
+
'CoVoST2-TA-EN' : 'covost2_ta_en_test',
|
19 |
+
'CN-College-Listen-MCQ': 'cn_college_listen_mcq_test',
|
20 |
+
'DREAM-TTS-MCQ' : 'dream_tts_mcq_test',
|
21 |
+
'SLUE-P2-SQA5' : 'slue_p2_sqa5_test',
|
22 |
+
'Public-SG-Speech-QA' : 'public_sg_speech_qa_test',
|
23 |
+
'Spoken-SQuAD' : 'spoken_squad_test',
|
24 |
+
'OpenHermes-Audio' : 'openhermes_audio_test',
|
25 |
+
'ALPACA-Audio' : 'alpaca_audio_test',
|
26 |
+
'WavCaps' : 'wavcaps_test',
|
27 |
+
'AudioCaps' : 'audiocaps_test',
|
28 |
+
'Clotho-AQA' : 'clotho_aqa_test',
|
29 |
+
'WavCaps-QA' : 'wavcaps_qa_test',
|
30 |
+
'AudioCaps-QA' : 'audiocaps_qa_test',
|
31 |
+
'VoxCeleb-Accent' : 'voxceleb_accent_test',
|
32 |
+
'MNSC-AR-Sentence' : 'imda_ar_sentence',
|
33 |
+
'MNSC-AR-Dialogue' : 'imda_ar_dialogue',
|
34 |
+
'VoxCeleb-Gender' : 'voxceleb_gender_test',
|
35 |
+
'IEMOCAP-Gender' : 'iemocap_gender_test',
|
36 |
+
'IEMOCAP-Emotion' : 'iemocap_emotion_test',
|
37 |
+
'MELD-Sentiment' : 'meld_sentiment_test',
|
38 |
+
'MELD-Emotion' : 'meld_emotion_test',
|
39 |
+
'MuChoMusic' : 'muchomusic_test',
|
40 |
+
'MNSC-PART1-ASR' : 'imda_part1_asr_test',
|
41 |
+
'MNSC-PART2-ASR' : 'imda_part2_asr_test',
|
42 |
+
'MNSC-PART3-ASR' : 'imda_part3_30s_asr_test',
|
43 |
+
'MNSC-PART4-ASR' : 'imda_part4_30s_asr_test',
|
44 |
+
'MNSC-PART5-ASR' : 'imda_part5_30s_asr_test',
|
45 |
+
'MNSC-PART6-ASR' : 'imda_part6_30s_asr_test',
|
46 |
+
'MNSC-PART3-SQA' : 'imda_part3_30s_sqa_human_test',
|
47 |
+
'MNSC-PART4-SQA' : 'imda_part4_30s_sqa_human_test',
|
48 |
+
'MNSC-PART5-SQA' : 'imda_part5_30s_sqa_human_test',
|
49 |
+
'MNSC-PART6-SQA' : 'imda_part6_30s_sqa_human_test',
|
50 |
+
'MNSC-PART3-SDS' : 'imda_part3_30s_ds_human_test',
|
51 |
+
'MNSC-PART4-SDS' : 'imda_part4_30s_ds_human_test',
|
52 |
+
'MNSC-PART5-SDS' : 'imda_part5_30s_ds_human_test',
|
53 |
+
'MNSC-PART6-SDS' : 'imda_part6_30s_ds_human_test',
|
54 |
+
|
55 |
+
'CNA' : 'cna_test',
|
56 |
+
'IDPC' : 'idpc_test',
|
57 |
+
'Parliament' : 'parliament_test',
|
58 |
+
'UKUS-News' : 'ukusnews_test',
|
59 |
+
'Mediacorp' : 'mediacorp_test',
|
60 |
+
'IDPC-Short' : 'idpc_short_test',
|
61 |
+
'Parliament-Short': 'parliament_short_test',
|
62 |
+
'UKUS-News-Short' : 'ukusnews_short_test',
|
63 |
+
'Mediacorp-Short' : 'mediacorp_short_test',
|
64 |
+
'YTB-ASR-Batch1' : 'ytb_asr_batch1',
|
65 |
+
'YTB-ASR-Batch2' : 'ytb_asr_batch2',
|
66 |
+
'SEAME-Dev-Man' : 'seame_dev_man',
|
67 |
+
'SEAME-Dev-Sge' : 'seame_dev_sge',
|
68 |
+
|
69 |
+
'YTB-SQA-Batch1': 'ytb_sqa_batch1',
|
70 |
+
'YTB-SDS-Batch1': 'ytb_sds_batch1',
|
71 |
+
'YTB-PQA-Batch1': 'ytb_pqa_batch1',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
|
|
|
|
|
|
|
|
73 |
}
|
74 |
|
75 |
+
datasetname2diaplayname = {datasetname: displayname for displayname, datasetname in displayname2datasetname.items()}
|
76 |
+
|
77 |
+
|
78 |
+
dataset_diaplay_information = {
|
79 |
+
'LibriSpeech-Clean' : 'A clean, high-quality testset of the LibriSpeech dataset, used for ASR testing.',
|
80 |
+
'LibriSpeech-Other' : 'A more challenging, noisier testset of the LibriSpeech dataset for ASR testing.',
|
81 |
+
'CommonVoice-15-EN' : 'Test set from the Common Voice project, which is a crowd-sourced, multilingual speech dataset.',
|
82 |
+
'Peoples-Speech' : 'A large-scale, open-source speech recognition dataset, with diverse accents and domains.',
|
83 |
+
'GigaSpeech-1' : 'A large-scale ASR dataset with diverse audio sources like podcasts, interviews, etc.',
|
84 |
+
'Earnings-21' : 'ASR test dataset focused on earnings calls from 2021, with professional speech and financial jargon.',
|
85 |
+
'Earnings-22' : 'Similar to Earnings21, but covering earnings calls from 2022.',
|
86 |
+
'TED-LIUM-3' : 'A test set derived from TED talks, covering diverse speakers and topics.',
|
87 |
+
'TED-LIUM-3-LongForm' : 'A longer version of the TED-LIUM dataset, containing extended audio samples. This poses challenges to existing fusion methods in handling long audios. However, it provides benchmark for future development.',
|
88 |
+
'AISHELL-ASR-ZH' : 'ASR test dataset for Mandarin Chinese, based on the Aishell dataset.',
|
89 |
+
'CoVoST2-EN-ID' : 'CoVoST 2 dataset for speech translation from English to Indonesian.',
|
90 |
+
'CoVoST2-EN-ZH' : 'CoVoST 2 dataset for speech translation from English to Chinese.',
|
91 |
+
'CoVoST2-EN-TA' : 'CoVoST 2 dataset for speech translation from English to Tamil.',
|
92 |
+
'CoVoST2-ID-EN' : 'CoVoST 2 dataset for speech translation from Indonesian to English.',
|
93 |
+
'CoVoST2-ZH-EN' : 'CoVoST 2 dataset for speech translation from Chinese to English.',
|
94 |
+
'CoVoST2-TA-EN' : 'CoVoST 2 dataset for speech translation from Tamil to English.',
|
95 |
+
'CN-College-Listen-MCQ': 'Chinese College English Listening Test, with multiple-choice questions.',
|
96 |
+
'DREAM-TTS-MCQ' : 'DREAM dataset for spoken question-answering, derived from textual data and synthesized speech.',
|
97 |
+
'SLUE-P2-SQA5' : 'Spoken Language Understanding Evaluation (SLUE) dataset, part 2, focused on QA tasks.',
|
98 |
+
'Public-SG-Speech-QA' : 'Public dataset for speech-based question answering, gathered from Singapore.',
|
99 |
+
'Spoken-SQuAD' : 'Spoken SQuAD dataset, based on the textual SQuAD dataset, converted into audio.',
|
100 |
+
'OpenHermes-Audio' : 'Test set for spoken instructions. Synthesized from the OpenHermes dataset.',
|
101 |
+
'ALPACA-Audio' : 'Spoken version of the ALPACA dataset, used for evaluating instruction following in audio.',
|
102 |
+
'WavCaps' : 'WavCaps is a dataset for testing audio captioning, where models generate textual descriptions of audio clips.',
|
103 |
+
'AudioCaps' : 'AudioCaps dataset, used for generating captions from general audio events.',
|
104 |
+
'Clotho-AQA' : 'Clotho dataset adapted for audio-based question answering, containing audio clips and questions.',
|
105 |
+
'WavCaps-QA' : 'Question-answering test dataset derived from WavCaps, focusing on audio content.',
|
106 |
+
'AudioCaps-QA' : 'AudioCaps adapted for question-answering tasks, using audio events as input for Q&A.',
|
107 |
+
'VoxCeleb-Accent' : 'Test dataset for accent recognition, based on VoxCeleb, a large speaker identification dataset.',
|
108 |
+
'MNSC-AR-Sentence' : 'Accent recognition based on the IMDA NSC dataset, focusing on sentence-level accents.',
|
109 |
+
'MNSC-AR-Dialogue' : 'Accent recognition based on the IMDA NSC dataset, focusing on dialogue-level accents.',
|
110 |
+
|
111 |
+
'VoxCeleb-Gender': 'Test dataset for gender classification, also derived from VoxCeleb.',
|
112 |
+
'IEMOCAP-Gender' : 'Gender classification based on the IEMOCAP dataset.',
|
113 |
+
'IEMOCAP-Emotion': 'Emotion recognition test data from the IEMOCAP dataset, focusing on identifying emotions in speech.',
|
114 |
+
'MELD-Sentiment' : 'Sentiment recognition from speech using the MELD dataset, classifying positive, negative, or neutral sentiments.',
|
115 |
+
'MELD-Emotion' : 'Emotion classification in speech using MELD, detecting specific emotions like happiness, anger, etc.',
|
116 |
+
'MuChoMusic' : 'Test dataset for music understanding, from paper: MuChoMusic: Evaluating Music Understanding in Multimodal Audio-Language Models.',
|
117 |
+
'MNSC-PART1-ASR' : 'Speech recognition test data from the IMDA NSC project, Part 1.',
|
118 |
+
'MNSC-PART2-ASR' : 'Speech recognition test data from the IMDA NSC project, Part 2.',
|
119 |
+
'MNSC-PART3-ASR' : 'Speech recognition test data from the IMDA NSC project, Part 3.',
|
120 |
+
'MNSC-PART4-ASR' : 'Speech recognition test data from the IMDA NSC project, Part 4.',
|
121 |
+
'MNSC-PART5-ASR' : 'Speech recognition test data from the IMDA NSC project, Part 5.',
|
122 |
+
'MNSC-PART6-ASR' : 'Speech recognition test data from the IMDA NSC project, Part 6.',
|
123 |
+
'MNSC-PART3-SQA' : 'Multitak National Speech Corpus (MNSC) dataset, Question answering task, Part 3.',
|
124 |
+
'MNSC-PART4-SQA' : 'Multitak National Speech Corpus (MNSC) dataset, Question answering task, Part 4.',
|
125 |
+
'MNSC-PART5-SQA' : 'Multitak National Speech Corpus (MNSC) dataset, Question answering task, Part 5.',
|
126 |
+
'MNSC-PART6-SQA' : 'Multitak National Speech Corpus (MNSC) dataset, Question answering task, Part 6.',
|
127 |
+
'MNSC-PART3-SDS' : 'Multitak National Speech Corpus (MNSC) dataset, dialogue summarization task, Part 3.',
|
128 |
+
'MNSC-PART4-SDS' : 'Multitak National Speech Corpus (MNSC) dataset, dialogue summarization task, Part 4.',
|
129 |
+
'MNSC-PART5-SDS' : 'Multitak National Speech Corpus (MNSC) dataset, dialogue summarization task, Part 5.',
|
130 |
+
'MNSC-PART6-SDS' : 'Multitak National Speech Corpus (MNSC) dataset, dialogue summarization task, Part 6.',
|
131 |
+
|
132 |
+
'CNA' : 'Under Development',
|
133 |
+
'IDPC' : 'Under Development',
|
134 |
+
'Parliament' : 'Under Development',
|
135 |
+
'UKUS-News' : 'Under Development',
|
136 |
+
'Mediacorp' : 'Under Development',
|
137 |
+
'IDPC-Short' : 'Under Development',
|
138 |
+
'Parliament-Short': 'Under Development',
|
139 |
+
'UKUS-News-Short' : 'Under Development',
|
140 |
+
'Mediacorp-Short' : 'Under Development',
|
141 |
+
'YTB-ASR-Batch1' : 'Under Development',
|
142 |
+
'YTB-ASR-Batch2' : 'Under Development',
|
143 |
+
'SEAME-Dev-Man' : 'Under Development',
|
144 |
+
'SEAME-Dev-Sge' : 'Under Development',
|
145 |
+
|
146 |
+
'YTB-SQA-Batch1': 'Under Development',
|
147 |
+
'YTB-SDS-Batch1': 'Under Development',
|
148 |
+
'YTB-PQA-Batch1': 'Under Development',
|
149 |
|
150 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
|
|
|
|
|
|
152 |
|
|
|
|
|
|
|
153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
metrics_info = {
|
156 |
'wer' : 'Word Error Rate (WER) - The Lower, the better.',
|
app/draw_diagram.py
CHANGED
@@ -2,32 +2,29 @@ import streamlit as st
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
from streamlit_echarts import st_echarts
|
5 |
-
from streamlit.components.v1 import html
|
6 |
-
# from PIL import Image
|
7 |
from app.show_examples import *
|
8 |
from app.content import *
|
|
|
9 |
import pandas as pd
|
10 |
|
11 |
from model_information import get_dataframe
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
info_df = get_dataframe()
|
16 |
|
17 |
|
18 |
-
def draw(folder_name, category_name,
|
19 |
|
20 |
folder = f"./results_organized/{metrics}/"
|
21 |
|
22 |
# Load the results from CSV
|
23 |
data_path = f'{folder}/{category_name.lower()}.csv'
|
24 |
chart_data = pd.read_csv(data_path).round(3)
|
25 |
-
|
26 |
-
|
|
|
27 |
|
28 |
# Rename to proper display name
|
29 |
-
|
30 |
-
|
31 |
|
32 |
st.markdown("""
|
33 |
<style>
|
@@ -52,7 +49,7 @@ def draw(folder_name, category_name, dataset_name, metrics, cus_sort=True):
|
|
52 |
)
|
53 |
|
54 |
chart_data = chart_data[chart_data['model_show'].isin(models)]
|
55 |
-
chart_data = chart_data.sort_values(by=[
|
56 |
|
57 |
if len(chart_data) == 0: return
|
58 |
|
@@ -103,6 +100,19 @@ def draw(folder_name, category_name, dataset_name, metrics, cus_sort=True):
|
|
103 |
'IMDA-Part4-30s-ASR',
|
104 |
'IMDA-Part5-30s-ASR',
|
105 |
'IMDA-Part6-30s-ASR',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
]:
|
107 |
|
108 |
chart_data_table = chart_data_table.sort_values(
|
@@ -203,7 +213,7 @@ def draw(folder_name, category_name, dataset_name, metrics, cus_sort=True):
|
|
203 |
"series": [{
|
204 |
"name": f"{dataset_name}",
|
205 |
"type": "bar",
|
206 |
-
"data": chart_data[f'{
|
207 |
}],
|
208 |
}
|
209 |
|
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
from streamlit_echarts import st_echarts
|
|
|
|
|
5 |
from app.show_examples import *
|
6 |
from app.content import *
|
7 |
+
|
8 |
import pandas as pd
|
9 |
|
10 |
from model_information import get_dataframe
|
|
|
|
|
|
|
11 |
info_df = get_dataframe()
|
12 |
|
13 |
|
14 |
+
def draw(folder_name, category_name, displayname, metrics, cus_sort=True):
|
15 |
|
16 |
folder = f"./results_organized/{metrics}/"
|
17 |
|
18 |
# Load the results from CSV
|
19 |
data_path = f'{folder}/{category_name.lower()}.csv'
|
20 |
chart_data = pd.read_csv(data_path).round(3)
|
21 |
+
|
22 |
+
dataset_name = displayname2datasetname[displayname]
|
23 |
+
chart_data = chart_data[['Model', dataset_name]]
|
24 |
|
25 |
# Rename to proper display name
|
26 |
+
chart_data = chart_data.rename(columns=datasetname2diaplayname)
|
27 |
+
|
28 |
|
29 |
st.markdown("""
|
30 |
<style>
|
|
|
49 |
)
|
50 |
|
51 |
chart_data = chart_data[chart_data['model_show'].isin(models)]
|
52 |
+
chart_data = chart_data.sort_values(by=[displayname], ascending=cus_sort).dropna(axis=0)
|
53 |
|
54 |
if len(chart_data) == 0: return
|
55 |
|
|
|
100 |
'IMDA-Part4-30s-ASR',
|
101 |
'IMDA-Part5-30s-ASR',
|
102 |
'IMDA-Part6-30s-ASR',
|
103 |
+
'CNA',
|
104 |
+
'IDPC',
|
105 |
+
'Parliament',
|
106 |
+
'UKUS-News',
|
107 |
+
'Mediacorp',
|
108 |
+
'IDPC-Short',
|
109 |
+
'Parliament-Short',
|
110 |
+
'UKUS-News-Short',
|
111 |
+
'Mediacorp-Short',
|
112 |
+
'YTB-ASR-Batch1',
|
113 |
+
'YTB-ASR-Batch2',
|
114 |
+
'SEAME-Dev-Man',
|
115 |
+
'SEAME-Dev-Sge',
|
116 |
]:
|
117 |
|
118 |
chart_data_table = chart_data_table.sort_values(
|
|
|
213 |
"series": [{
|
214 |
"name": f"{dataset_name}",
|
215 |
"type": "bar",
|
216 |
+
"data": chart_data[f'{displayname}'].tolist(),
|
217 |
}],
|
218 |
}
|
219 |
|
app/pages.py
CHANGED
@@ -75,7 +75,7 @@ def dashboard():
|
|
75 |
|
76 |
st.divider()
|
77 |
with st.container():
|
78 |
-
left_co, right_co = st.columns([1, 0.
|
79 |
|
80 |
with left_co:
|
81 |
st.markdown("""
|
@@ -88,25 +88,52 @@ def dashboard():
|
|
88 |
year={2024}
|
89 |
}
|
90 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
""")
|
92 |
|
93 |
|
94 |
|
95 |
|
|
|
|
|
|
|
96 |
def asr_english():
|
97 |
st.title("Task: Automatic Speech Recognition - English")
|
98 |
|
99 |
sum = ['Overall']
|
100 |
dataset_lists = [
|
101 |
-
'LibriSpeech-
|
102 |
-
'LibriSpeech-
|
103 |
-
'
|
104 |
-
'Peoples-Speech
|
105 |
-
'GigaSpeech-
|
106 |
-
'
|
107 |
-
'
|
108 |
-
'
|
109 |
-
'
|
110 |
]
|
111 |
|
112 |
filters_levelone = sum + dataset_lists
|
@@ -120,7 +147,7 @@ def asr_english():
|
|
120 |
if filter_1 in sum:
|
121 |
sum_table_mulit_metrix('asr_english', ['wer'])
|
122 |
else:
|
123 |
-
dataset_contents(
|
124 |
draw('su', 'asr_english', filter_1, 'wer', cus_sort=True)
|
125 |
|
126 |
|
@@ -132,12 +159,12 @@ def asr_singlish():
|
|
132 |
|
133 |
sum = ['Overall']
|
134 |
dataset_lists = [
|
135 |
-
'
|
136 |
-
'
|
137 |
-
'
|
138 |
-
'
|
139 |
-
'
|
140 |
-
'
|
141 |
]
|
142 |
|
143 |
filters_levelone = sum + dataset_lists
|
@@ -151,7 +178,7 @@ def asr_singlish():
|
|
151 |
if filter_1 in sum:
|
152 |
sum_table_mulit_metrix('asr_singlish', ['wer'])
|
153 |
else:
|
154 |
-
dataset_contents(
|
155 |
draw('su', 'asr_singlish', filter_1, 'wer')
|
156 |
|
157 |
|
@@ -162,7 +189,7 @@ def asr_mandarin():
|
|
162 |
|
163 |
sum = ['Overall']
|
164 |
dataset_lists = [
|
165 |
-
'
|
166 |
]
|
167 |
|
168 |
filters_levelone = sum + dataset_lists
|
@@ -176,7 +203,7 @@ def asr_mandarin():
|
|
176 |
if filter_1 in sum:
|
177 |
sum_table_mulit_metrix('asr_mandarin', ['wer'])
|
178 |
else:
|
179 |
-
dataset_contents(
|
180 |
draw('su', 'asr_mandarin', filter_1, 'wer')
|
181 |
|
182 |
|
@@ -187,12 +214,12 @@ def speech_translation():
|
|
187 |
|
188 |
sum = ['Overall']
|
189 |
dataset_lists = [
|
190 |
-
'CoVoST2-EN-ID
|
191 |
-
'CoVoST2-EN-ZH
|
192 |
-
'CoVoST2-EN-TA
|
193 |
-
'CoVoST2-ID-EN
|
194 |
-
'CoVoST2-ZH-EN
|
195 |
-
'CoVoST2-TA-EN
|
196 |
|
197 |
filters_levelone = sum + dataset_lists
|
198 |
|
@@ -205,7 +232,7 @@ def speech_translation():
|
|
205 |
if filter_1 in sum:
|
206 |
sum_table_mulit_metrix('st', ['bleu'])
|
207 |
else:
|
208 |
-
dataset_contents(
|
209 |
draw('su', 'ST', filter_1, 'bleu')
|
210 |
|
211 |
|
@@ -217,11 +244,11 @@ def speech_question_answering_english():
|
|
217 |
sum = ['Overall']
|
218 |
|
219 |
dataset_lists = [
|
220 |
-
'CN-College-Listen-MCQ
|
221 |
-
'DREAM-TTS-MCQ
|
222 |
-
'SLUE-P2-SQA5
|
223 |
-
'Public-SG-Speech-QA
|
224 |
-
'Spoken-
|
225 |
]
|
226 |
|
227 |
filters_levelone = sum + dataset_lists
|
@@ -240,7 +267,7 @@ def speech_question_answering_english():
|
|
240 |
# draw('su', 'SQA', filter_1, 'llama3_70b_judge')
|
241 |
|
242 |
else:
|
243 |
-
dataset_contents(
|
244 |
draw('su', 'sqa_english', filter_1, 'llama3_70b_judge')
|
245 |
|
246 |
|
@@ -271,10 +298,39 @@ def speech_question_answering_singlish():
|
|
271 |
sum_table_mulit_metrix('sqa_singlish', ['llama3_70b_judge'])
|
272 |
|
273 |
else:
|
274 |
-
dataset_contents(
|
275 |
draw('su', 'sqa_singlish', filter_1, 'llama3_70b_judge')
|
276 |
|
277 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
|
279 |
|
280 |
def speech_instruction():
|
@@ -282,8 +338,8 @@ def speech_instruction():
|
|
282 |
|
283 |
sum = ['Overall']
|
284 |
|
285 |
-
dataset_lists = ['OpenHermes-Audio
|
286 |
-
'ALPACA-Audio
|
287 |
]
|
288 |
|
289 |
filters_levelone = sum + dataset_lists
|
@@ -297,7 +353,7 @@ def speech_instruction():
|
|
297 |
if filter_1 in sum:
|
298 |
sum_table_mulit_metrix('speech_instruction', ['llama3_70b_judge'])
|
299 |
else:
|
300 |
-
dataset_contents(
|
301 |
draw('su', 'speech_instruction', filter_1, 'llama3_70b_judge')
|
302 |
|
303 |
|
@@ -306,8 +362,8 @@ def speech_instruction():
|
|
306 |
def audio_captioning():
|
307 |
st.title("Task: Audio Captioning")
|
308 |
|
309 |
-
filters_levelone = ['WavCaps
|
310 |
-
'AudioCaps
|
311 |
]
|
312 |
filters_leveltwo = ['Llama3-70b-judge', 'Meteor']
|
313 |
|
@@ -319,7 +375,7 @@ def audio_captioning():
|
|
319 |
metric = st.selectbox('Metric', filters_leveltwo)
|
320 |
|
321 |
if filter_1 or metric:
|
322 |
-
dataset_contents(
|
323 |
draw('asu', 'audio_captioning', filter_1, metric.lower().replace('-', '_'))
|
324 |
|
325 |
|
@@ -330,9 +386,9 @@ def audio_scene_question_answering():
|
|
330 |
|
331 |
sum = ['Overall']
|
332 |
|
333 |
-
dataset_lists = ['Clotho-AQA
|
334 |
-
'WavCaps-QA
|
335 |
-
'AudioCaps-QA
|
336 |
|
337 |
filters_levelone = sum + dataset_lists
|
338 |
|
@@ -345,7 +401,7 @@ def audio_scene_question_answering():
|
|
345 |
if filter_1 in sum:
|
346 |
sum_table_mulit_metrix('audio_scene_question_answering', ['llama3_70b_judge'])
|
347 |
else:
|
348 |
-
dataset_contents(
|
349 |
draw('asu', 'audio_scene_question_answering', filter_1, 'llama3_70b_judge')
|
350 |
|
351 |
|
@@ -357,9 +413,9 @@ def emotion_recognition():
|
|
357 |
sum = ['Overall']
|
358 |
|
359 |
dataset_lists = [
|
360 |
-
'IEMOCAP-Emotion
|
361 |
-
'MELD-Sentiment
|
362 |
-
'MELD-Emotion
|
363 |
]
|
364 |
|
365 |
filters_levelone = sum + dataset_lists
|
@@ -373,7 +429,7 @@ def emotion_recognition():
|
|
373 |
if filter_1 in sum:
|
374 |
sum_table_mulit_metrix('emotion_recognition', ['llama3_70b_judge'])
|
375 |
else:
|
376 |
-
dataset_contents(
|
377 |
draw('vu', 'emotion_recognition', filter_1, 'llama3_70b_judge')
|
378 |
|
379 |
|
@@ -383,7 +439,11 @@ def accent_recognition():
|
|
383 |
st.title("Task: Accent Recognition")
|
384 |
|
385 |
sum = ['Overall']
|
386 |
-
dataset_lists = [
|
|
|
|
|
|
|
|
|
387 |
|
388 |
|
389 |
filters_levelone = sum + dataset_lists
|
@@ -398,7 +458,7 @@ def accent_recognition():
|
|
398 |
if filter_1 in sum:
|
399 |
sum_table_mulit_metrix('accent_recognition', ['llama3_70b_judge'])
|
400 |
else:
|
401 |
-
dataset_contents(
|
402 |
draw('vu', 'accent_recognition', filter_1, 'llama3_70b_judge')
|
403 |
|
404 |
|
@@ -409,8 +469,10 @@ def gender_recognition():
|
|
409 |
|
410 |
sum = ['Overall']
|
411 |
|
412 |
-
dataset_lists = [
|
413 |
-
'
|
|
|
|
|
414 |
|
415 |
filters_levelone = sum + dataset_lists
|
416 |
|
@@ -423,7 +485,7 @@ def gender_recognition():
|
|
423 |
if filter_1 in sum:
|
424 |
sum_table_mulit_metrix('gender_recognition', ['llama3_70b_judge'])
|
425 |
else:
|
426 |
-
dataset_contents(
|
427 |
draw('vu', 'gender_recognition', filter_1, 'llama3_70b_judge')
|
428 |
|
429 |
|
@@ -434,7 +496,7 @@ def music_understanding():
|
|
434 |
|
435 |
sum = ['Overall']
|
436 |
|
437 |
-
dataset_lists = ['MuChoMusic
|
438 |
]
|
439 |
|
440 |
filters_levelone = sum + dataset_lists
|
@@ -448,7 +510,7 @@ def music_understanding():
|
|
448 |
if filter_1 in sum:
|
449 |
sum_table_mulit_metrix('music_understanding', ['llama3_70b_judge'])
|
450 |
else:
|
451 |
-
dataset_contents(
|
452 |
draw('vu', 'music_understanding', filter_1, 'llama3_70b_judge')
|
453 |
|
454 |
|
@@ -457,3 +519,70 @@ def music_understanding():
|
|
457 |
|
458 |
|
459 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
st.divider()
|
77 |
with st.container():
|
78 |
+
left_co, right_co = st.columns([1, 0.1])
|
79 |
|
80 |
with left_co:
|
81 |
st.markdown("""
|
|
|
88 |
year={2024}
|
89 |
}
|
90 |
```
|
91 |
+
```
|
92 |
+
@article{wang2025advancing,
|
93 |
+
title={Advancing Singlish Understanding: Bridging the Gap with Datasets and Multimodal Models},
|
94 |
+
author={Wang, Bin and Zou, Xunlong and Sun, Shuo and Zhang, Wenyu and He, Yingxu and Liu, Zhuohan and Wei, Chengwei and Chen, Nancy F and Aw, AiTi},
|
95 |
+
journal={arXiv preprint arXiv:2501.01034},
|
96 |
+
year={2025}
|
97 |
+
}
|
98 |
+
```
|
99 |
+
```
|
100 |
+
@article{he2024meralion,
|
101 |
+
title={MERaLiON-AudioLLM: Technical Report},
|
102 |
+
author={He, Yingxu and Liu, Zhuohan and Sun, Shuo and Wang, Bin and Zhang, Wenyu and Zou, Xunlong and Chen, Nancy F and Aw, Ai Ti},
|
103 |
+
journal={arXiv preprint arXiv:2412.09818},
|
104 |
+
year={2024}
|
105 |
+
}
|
106 |
+
```
|
107 |
+
```
|
108 |
+
@article{zhang2024mowe,
|
109 |
+
title={MoWE-Audio: Multitask AudioLLMs with Mixture of Weak Encoders},
|
110 |
+
author={Zhang, Wenyu and Sun, Shuo and Wang, Bin and Zou, Xunlong and Liu, Zhuohan and He, Yingxu and Lin, Geyu and Chen, Nancy F and Aw, Ai Ti},
|
111 |
+
journal={ICASSP},
|
112 |
+
year={2025}
|
113 |
+
}
|
114 |
+
```
|
115 |
""")
|
116 |
|
117 |
|
118 |
|
119 |
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
def asr_english():
|
124 |
st.title("Task: Automatic Speech Recognition - English")
|
125 |
|
126 |
sum = ['Overall']
|
127 |
dataset_lists = [
|
128 |
+
'LibriSpeech-Clean',
|
129 |
+
'LibriSpeech-Other',
|
130 |
+
'CommonVoice-15-EN',
|
131 |
+
'Peoples-Speech',
|
132 |
+
'GigaSpeech-1',
|
133 |
+
'Earnings-21',
|
134 |
+
'Earnings-22',
|
135 |
+
'TED-LIUM-3',
|
136 |
+
'TED-LIUM-3-LongForm',
|
137 |
]
|
138 |
|
139 |
filters_levelone = sum + dataset_lists
|
|
|
147 |
if filter_1 in sum:
|
148 |
sum_table_mulit_metrix('asr_english', ['wer'])
|
149 |
else:
|
150 |
+
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['wer'])
|
151 |
draw('su', 'asr_english', filter_1, 'wer', cus_sort=True)
|
152 |
|
153 |
|
|
|
159 |
|
160 |
sum = ['Overall']
|
161 |
dataset_lists = [
|
162 |
+
'MNSC-PART1-ASR',
|
163 |
+
'MNSC-PART2-ASR',
|
164 |
+
'MNSC-PART3-ASR',
|
165 |
+
'MNSC-PART4-ASR',
|
166 |
+
'MNSC-PART5-ASR',
|
167 |
+
'MNSC-PART6-ASR',
|
168 |
]
|
169 |
|
170 |
filters_levelone = sum + dataset_lists
|
|
|
178 |
if filter_1 in sum:
|
179 |
sum_table_mulit_metrix('asr_singlish', ['wer'])
|
180 |
else:
|
181 |
+
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['wer'])
|
182 |
draw('su', 'asr_singlish', filter_1, 'wer')
|
183 |
|
184 |
|
|
|
189 |
|
190 |
sum = ['Overall']
|
191 |
dataset_lists = [
|
192 |
+
'AISHELL-ASR-ZH',
|
193 |
]
|
194 |
|
195 |
filters_levelone = sum + dataset_lists
|
|
|
203 |
if filter_1 in sum:
|
204 |
sum_table_mulit_metrix('asr_mandarin', ['wer'])
|
205 |
else:
|
206 |
+
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['wer'])
|
207 |
draw('su', 'asr_mandarin', filter_1, 'wer')
|
208 |
|
209 |
|
|
|
214 |
|
215 |
sum = ['Overall']
|
216 |
dataset_lists = [
|
217 |
+
'CoVoST2-EN-ID',
|
218 |
+
'CoVoST2-EN-ZH',
|
219 |
+
'CoVoST2-EN-TA',
|
220 |
+
'CoVoST2-ID-EN',
|
221 |
+
'CoVoST2-ZH-EN',
|
222 |
+
'CoVoST2-TA-EN']
|
223 |
|
224 |
filters_levelone = sum + dataset_lists
|
225 |
|
|
|
232 |
if filter_1 in sum:
|
233 |
sum_table_mulit_metrix('st', ['bleu'])
|
234 |
else:
|
235 |
+
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['bleu'])
|
236 |
draw('su', 'ST', filter_1, 'bleu')
|
237 |
|
238 |
|
|
|
244 |
sum = ['Overall']
|
245 |
|
246 |
dataset_lists = [
|
247 |
+
'CN-College-Listen-MCQ',
|
248 |
+
'DREAM-TTS-MCQ',
|
249 |
+
'SLUE-P2-SQA5',
|
250 |
+
'Public-SG-Speech-QA',
|
251 |
+
'Spoken-SQuAD',
|
252 |
]
|
253 |
|
254 |
filters_levelone = sum + dataset_lists
|
|
|
267 |
# draw('su', 'SQA', filter_1, 'llama3_70b_judge')
|
268 |
|
269 |
else:
|
270 |
+
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
|
271 |
draw('su', 'sqa_english', filter_1, 'llama3_70b_judge')
|
272 |
|
273 |
|
|
|
298 |
sum_table_mulit_metrix('sqa_singlish', ['llama3_70b_judge'])
|
299 |
|
300 |
else:
|
301 |
+
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
|
302 |
draw('su', 'sqa_singlish', filter_1, 'llama3_70b_judge')
|
303 |
|
304 |
|
305 |
+
def spoken_dialogue_summarization_singlish():
|
306 |
+
st.title("Task: Spoken Dialogue Summarization - Singlish")
|
307 |
+
|
308 |
+
sum = ['Overall']
|
309 |
+
|
310 |
+
dataset_lists = [
|
311 |
+
'MNSC-PART3-SDS',
|
312 |
+
'MNSC-PART4-SDS',
|
313 |
+
'MNSC-PART5-SDS',
|
314 |
+
'MNSC-PART6-SDS',
|
315 |
+
]
|
316 |
+
|
317 |
+
|
318 |
+
filters_levelone = sum + dataset_lists
|
319 |
+
|
320 |
+
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
321 |
+
|
322 |
+
with left:
|
323 |
+
filter_1 = st.selectbox('Dataset', filters_levelone)
|
324 |
+
|
325 |
+
if filter_1:
|
326 |
+
if filter_1 in sum:
|
327 |
+
sum_table_mulit_metrix('sds_singlish', ['llama3_70b_judge'])
|
328 |
+
|
329 |
+
else:
|
330 |
+
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
|
331 |
+
draw('su', 'sds_singlish', filter_1, 'llama3_70b_judge')
|
332 |
+
|
333 |
+
|
334 |
|
335 |
|
336 |
def speech_instruction():
|
|
|
338 |
|
339 |
sum = ['Overall']
|
340 |
|
341 |
+
dataset_lists = ['OpenHermes-Audio',
|
342 |
+
'ALPACA-Audio',
|
343 |
]
|
344 |
|
345 |
filters_levelone = sum + dataset_lists
|
|
|
353 |
if filter_1 in sum:
|
354 |
sum_table_mulit_metrix('speech_instruction', ['llama3_70b_judge'])
|
355 |
else:
|
356 |
+
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
|
357 |
draw('su', 'speech_instruction', filter_1, 'llama3_70b_judge')
|
358 |
|
359 |
|
|
|
362 |
def audio_captioning():
|
363 |
st.title("Task: Audio Captioning")
|
364 |
|
365 |
+
filters_levelone = ['WavCaps',
|
366 |
+
'AudioCaps',
|
367 |
]
|
368 |
filters_leveltwo = ['Llama3-70b-judge', 'Meteor']
|
369 |
|
|
|
375 |
metric = st.selectbox('Metric', filters_leveltwo)
|
376 |
|
377 |
if filter_1 or metric:
|
378 |
+
dataset_contents(dataset_diaplay_information[filter_1], metrics_info[metric.lower().replace('-', '_')])
|
379 |
draw('asu', 'audio_captioning', filter_1, metric.lower().replace('-', '_'))
|
380 |
|
381 |
|
|
|
386 |
|
387 |
sum = ['Overall']
|
388 |
|
389 |
+
dataset_lists = ['Clotho-AQA',
|
390 |
+
'WavCaps-QA',
|
391 |
+
'AudioCaps-QA']
|
392 |
|
393 |
filters_levelone = sum + dataset_lists
|
394 |
|
|
|
401 |
if filter_1 in sum:
|
402 |
sum_table_mulit_metrix('audio_scene_question_answering', ['llama3_70b_judge'])
|
403 |
else:
|
404 |
+
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
|
405 |
draw('asu', 'audio_scene_question_answering', filter_1, 'llama3_70b_judge')
|
406 |
|
407 |
|
|
|
413 |
sum = ['Overall']
|
414 |
|
415 |
dataset_lists = [
|
416 |
+
'IEMOCAP-Emotion',
|
417 |
+
'MELD-Sentiment',
|
418 |
+
'MELD-Emotion',
|
419 |
]
|
420 |
|
421 |
filters_levelone = sum + dataset_lists
|
|
|
429 |
if filter_1 in sum:
|
430 |
sum_table_mulit_metrix('emotion_recognition', ['llama3_70b_judge'])
|
431 |
else:
|
432 |
+
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
|
433 |
draw('vu', 'emotion_recognition', filter_1, 'llama3_70b_judge')
|
434 |
|
435 |
|
|
|
439 |
st.title("Task: Accent Recognition")
|
440 |
|
441 |
sum = ['Overall']
|
442 |
+
dataset_lists = [
|
443 |
+
'VoxCeleb-Accent',
|
444 |
+
'MNSC-AR-Sentence',
|
445 |
+
'MNSC-AR-Dialogue',
|
446 |
+
]
|
447 |
|
448 |
|
449 |
filters_levelone = sum + dataset_lists
|
|
|
458 |
if filter_1 in sum:
|
459 |
sum_table_mulit_metrix('accent_recognition', ['llama3_70b_judge'])
|
460 |
else:
|
461 |
+
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
|
462 |
draw('vu', 'accent_recognition', filter_1, 'llama3_70b_judge')
|
463 |
|
464 |
|
|
|
469 |
|
470 |
sum = ['Overall']
|
471 |
|
472 |
+
dataset_lists = [
|
473 |
+
'VoxCeleb-Gender',
|
474 |
+
'IEMOCAP-Gender'
|
475 |
+
]
|
476 |
|
477 |
filters_levelone = sum + dataset_lists
|
478 |
|
|
|
485 |
if filter_1 in sum:
|
486 |
sum_table_mulit_metrix('gender_recognition', ['llama3_70b_judge'])
|
487 |
else:
|
488 |
+
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
|
489 |
draw('vu', 'gender_recognition', filter_1, 'llama3_70b_judge')
|
490 |
|
491 |
|
|
|
496 |
|
497 |
sum = ['Overall']
|
498 |
|
499 |
+
dataset_lists = ['MuChoMusic',
|
500 |
]
|
501 |
|
502 |
filters_levelone = sum + dataset_lists
|
|
|
510 |
if filter_1 in sum:
|
511 |
sum_table_mulit_metrix('music_understanding', ['llama3_70b_judge'])
|
512 |
else:
|
513 |
+
dataset_contents(dataset_diaplay_information[filter_1], metrics_info['llama3_70b_judge'])
|
514 |
draw('vu', 'music_understanding', filter_1, 'llama3_70b_judge')
|
515 |
|
516 |
|
|
|
519 |
|
520 |
|
521 |
|
522 |
+
|
523 |
+
|
524 |
+
|
525 |
+
def under_development():
|
526 |
+
st.title("Task: Under Development")
|
527 |
+
|
528 |
+
|
529 |
+
dataset_lists = [
|
530 |
+
'CNA',
|
531 |
+
'IDPC',
|
532 |
+
'Parliament',
|
533 |
+
'UKUS-News',
|
534 |
+
'Mediacorp',
|
535 |
+
'IDPC-Short',
|
536 |
+
'Parliament-Short',
|
537 |
+
'UKUS-News-Short',
|
538 |
+
'Mediacorp-Short',
|
539 |
+
|
540 |
+
'YTB-ASR-Batch1',
|
541 |
+
'YTB-ASR-Batch2',
|
542 |
+
'SEAME-Dev-Man',
|
543 |
+
'SEAME-Dev-Sge',
|
544 |
+
|
545 |
+
'YTB-SQA-Batch1',
|
546 |
+
'YTB-SDS-Batch1',
|
547 |
+
'YTB-PQA-Batch1',
|
548 |
+
|
549 |
+
]
|
550 |
+
|
551 |
+
filters_levelone = dataset_lists
|
552 |
+
|
553 |
+
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
|
554 |
+
|
555 |
+
with left:
|
556 |
+
filter_1 = st.selectbox('Dataset', filters_levelone)
|
557 |
+
|
558 |
+
dataset_contents(dataset_diaplay_information[filter_1], 'under_development')
|
559 |
+
|
560 |
+
if filter_1 in [
|
561 |
+
'CNA',
|
562 |
+
'IDPC',
|
563 |
+
'Parliament',
|
564 |
+
'UKUS-News',
|
565 |
+
'Mediacorp',
|
566 |
+
'IDPC-Short',
|
567 |
+
'Parliament-Short',
|
568 |
+
'UKUS-News-Short',
|
569 |
+
'Mediacorp-Short',
|
570 |
+
'YTB-ASR-Batch1',
|
571 |
+
'YTB-ASR-Batch2',
|
572 |
+
'SEAME-Dev-Man',
|
573 |
+
'SEAME-Dev-Sge',
|
574 |
+
]:
|
575 |
+
|
576 |
+
draw('vu', 'under_development_wer', filter_1, 'wer')
|
577 |
+
|
578 |
+
elif filter_1 in [
|
579 |
+
'YTB-SQA-Batch1',
|
580 |
+
'YTB-SDS-Batch1',
|
581 |
+
'YTB-PQA-Batch1',
|
582 |
+
]:
|
583 |
+
draw('vu', 'under_development_llama3_70b_judge', filter_1, 'llama3_70b_judge')
|
584 |
+
|
585 |
+
|
586 |
+
|
587 |
+
|
588 |
+
|
app/summarization.py
CHANGED
@@ -14,7 +14,6 @@ from model_information import get_dataframe
|
|
14 |
|
15 |
info_df = get_dataframe()
|
16 |
|
17 |
-
metrics_info = metrics_info
|
18 |
|
19 |
def sum_table_mulit_metrix(task_name, metrics_lists: List[str]):
|
20 |
|
@@ -34,7 +33,7 @@ def sum_table_mulit_metrix(task_name, metrics_lists: List[str]):
|
|
34 |
chart_data['Average'] = chart_data[selected_columns].mean(axis=1)
|
35 |
|
36 |
# Update dataset name in table
|
37 |
-
chart_data = chart_data.rename(columns=
|
38 |
|
39 |
st.markdown("""
|
40 |
<style>
|
@@ -55,11 +54,9 @@ def sum_table_mulit_metrix(task_name, metrics_lists: List[str]):
|
|
55 |
models = st.multiselect("Please choose the model",
|
56 |
sorted(chart_data['model_show'].tolist()),
|
57 |
default = sorted(chart_data['model_show'].tolist()),
|
58 |
-
# key=f"multiselect_{task_name}_{metrics}"
|
59 |
)
|
60 |
|
61 |
chart_data = chart_data[chart_data['model_show'].isin(models)].dropna(axis=0)
|
62 |
-
# chart_data = chart_data.sort_values(by=['Average'], ascending=True).dropna(axis=0)
|
63 |
|
64 |
if len(chart_data) == 0: return
|
65 |
|
|
|
14 |
|
15 |
info_df = get_dataframe()
|
16 |
|
|
|
17 |
|
18 |
def sum_table_mulit_metrix(task_name, metrics_lists: List[str]):
|
19 |
|
|
|
33 |
chart_data['Average'] = chart_data[selected_columns].mean(axis=1)
|
34 |
|
35 |
# Update dataset name in table
|
36 |
+
chart_data = chart_data.rename(columns=datasetname2diaplayname)
|
37 |
|
38 |
st.markdown("""
|
39 |
<style>
|
|
|
54 |
models = st.multiselect("Please choose the model",
|
55 |
sorted(chart_data['model_show'].tolist()),
|
56 |
default = sorted(chart_data['model_show'].tolist()),
|
|
|
57 |
)
|
58 |
|
59 |
chart_data = chart_data[chart_data['model_show'].isin(models)].dropna(axis=0)
|
|
|
60 |
|
61 |
if len(chart_data) == 0: return
|
62 |
|