Spaces:
Running
Running
import pandas as pd | |
# Define the data | |
data = { | |
"Original Name" : [], | |
"Proper Display Name": [], | |
"Link" : [], | |
} | |
# Add model information to the | |
data['Original Name'].append('SALMONN_7B') | |
data['Proper Display Name'].append('Fusion: SALMONN-7B') | |
data['Link'].append('https://arxiv.org/html/2310.13289v2') | |
data['Original Name'].append('WavLLM_fairseq') | |
data['Proper Display Name'].append('Fusion: WavLLM') | |
data['Link'].append('https://arxiv.org/abs/2404.00656') | |
data['Original Name'].append('Qwen2-Audio-7B-Instruct') | |
data['Proper Display Name'].append('Fusion: Qwen2-Audio-7B-Instruct') | |
data['Link'].append('https://arxiv.org/abs/2407.10759') | |
data['Original Name'].append('cascade_whisper_large_v3_llama_3_8b_instruct') | |
data['Proper Display Name'].append('Cascade: Whisper-Large-v3 / Llama-3-8B-Instruct') | |
data['Link'].append('https://arxiv.org/abs/2406.16020') | |
data['Original Name'].append('mowe_audio') | |
data['Proper Display Name'].append('Fusion: MOWE-Audio') | |
data['Link'].append('https://arxiv.org/abs/2409.06635') | |
data['Original Name'].append('Qwen-Audio-Chat') | |
data['Proper Display Name'].append('Fusion: Qwen-Audio-Chat') | |
data['Link'].append('https://arxiv.org/abs/2311.07919') | |
data['Original Name'].append('MERaLiON-AudioLLM-Whisper-SEA-LION') | |
data['Proper Display Name'].append('Fusion: MERaLiON-AudioLLM-Whisper-SEA-LION') | |
data['Link'].append('https://huggingface.co/MERaLiON/MERaLiON-AudioLLM-Whisper-SEA-LION') | |
data['Original Name'].append('cascade_whisper_large_v2_gemma2_9b_cpt_sea_lionv3_instruct') | |
data['Proper Display Name'].append('Cascade: Whisper-Large-v2 / SEA-LIONv3') | |
data['Link'].append('https://github.com/aisingapore/sealion') | |
data['Original Name'].append('whisper_large_v3') | |
data['Proper Display Name'].append('Whisper-large-v3') | |
data['Link'].append('https://huggingface.co/openai/whisper-large-v3') | |
def get_dataframe(): | |
""" | |
Returns a DataFrame with the data and drops rows with missing values. | |
""" | |
df = pd.DataFrame(data) | |
return df.dropna(axis=0) | |