Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load the model and tokenizer
|
6 |
+
model_name = "Lyte/Llama-3.2-3B-Overthinker"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
|
9 |
+
|
10 |
+
def generate_response_stream(prompt, max_tokens, temperature, top_p, repeat_penalty, num_steps=4):
|
11 |
+
messages = [{"role": "user", "content": prompt}]
|
12 |
+
|
13 |
+
# Generate reasoning
|
14 |
+
reasoning_template = tokenizer.apply_chat_template(messages, tokenize=False, add_reasoning_prompt=True)
|
15 |
+
reasoning_inputs = tokenizer(reasoning_template, return_tensors="pt").to(model.device)
|
16 |
+
|
17 |
+
reasoning_ids = model.generate(
|
18 |
+
**reasoning_inputs,
|
19 |
+
max_new_tokens=max_tokens // 3,
|
20 |
+
temperature=temperature,
|
21 |
+
top_p=top_p,
|
22 |
+
repetition_penalty=repeat_penalty
|
23 |
+
)
|
24 |
+
reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
25 |
+
yield reasoning_output, "", ""
|
26 |
+
|
27 |
+
# Generate thinking (step-by-step and verifications)
|
28 |
+
messages.append({"role": "reasoning", "content": reasoning_output})
|
29 |
+
thinking_template = tokenizer.apply_chat_template(messages, tokenize=False, add_thinking_prompt=True, num_steps=num_steps)
|
30 |
+
thinking_inputs = tokenizer(thinking_template, return_tensors="pt").to(model.device)
|
31 |
+
|
32 |
+
thinking_ids = model.generate(
|
33 |
+
**thinking_inputs,
|
34 |
+
max_new_tokens=max_tokens // 3,
|
35 |
+
temperature=temperature,
|
36 |
+
top_p=top_p,
|
37 |
+
repetition_penalty=repeat_penalty
|
38 |
+
)
|
39 |
+
thinking_output = tokenizer.decode(thinking_ids[0, thinking_inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
40 |
+
yield reasoning_output, thinking_output, ""
|
41 |
+
|
42 |
+
# Generate final answer
|
43 |
+
messages.append({"role": "thinking", "content": thinking_output})
|
44 |
+
answer_template = tokenizer.apply_chat_template(messages, tokenize=False, add_answer_prompt=True)
|
45 |
+
answer_inputs = tokenizer(answer_template, return_tensors="pt").to(model.device)
|
46 |
+
|
47 |
+
answer_ids = model.generate(
|
48 |
+
**answer_inputs,
|
49 |
+
max_new_tokens=max_tokens // 3,
|
50 |
+
temperature=temperature,
|
51 |
+
top_p=top_p,
|
52 |
+
repetition_penalty=repeat_penalty
|
53 |
+
)
|
54 |
+
answer_output = tokenizer.decode(answer_ids[0, answer_inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
55 |
+
yield reasoning_output, thinking_output, answer_output
|
56 |
+
|
57 |
+
with gr.Blocks() as iface:
|
58 |
+
gr.Markdown("# Llama-3.2-3B Overthinker Customizable Steps, Please Duplicate and run with GPU if you can! T4 is fine!")
|
59 |
+
gr.Markdown("Generate responses using the Llama-3.2-3B Reasoning model.")
|
60 |
+
|
61 |
+
with gr.Row():
|
62 |
+
with gr.Column(scale=2):
|
63 |
+
prompt = gr.Textbox(lines=5, label="Prompt")
|
64 |
+
generate_button = gr.Button("Generate Response")
|
65 |
+
with gr.Column(scale=1):
|
66 |
+
max_tokens = gr.Slider(minimum=512, maximum=32768, value=8192, label="Max Number of Tokens")
|
67 |
+
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.8, label="Temperature")
|
68 |
+
top_p = gr.Slider(minimum=0.01, maximum=0.99, value=0.95, label="Top P")
|
69 |
+
repeat_penalty = gr.Slider(minimum=0.5, maximum=2, value=1.1, label="Repeat Penalty")
|
70 |
+
num_steps = gr.Slider(minimum=1, maximum=10, value=4, label="Max Number of Steps")
|
71 |
+
|
72 |
+
reasoning_output = gr.Textbox(lines=5, label="Reasoning")
|
73 |
+
with gr.Accordion("Thinking Process", open=False):
|
74 |
+
thinking_output = gr.Textbox(lines=10, label="Step-by-Step Thinking")
|
75 |
+
answer_output = gr.Textbox(lines=5, label="Final Answer")
|
76 |
+
|
77 |
+
generate_button.click(
|
78 |
+
fn=generate_response_stream,
|
79 |
+
inputs=[prompt, max_tokens, temperature, top_p, repeat_penalty, num_steps],
|
80 |
+
outputs=[reasoning_output, thinking_output, answer_output]
|
81 |
+
)
|
82 |
+
|
83 |
+
iface.launch()
|