import streamlit as st from transformers import pipeline from PIL import Image from langchain.chat_models import ChatGoogleGenerativeAI import os # Set up the Google API Key (add this as a secret in Hugging Face Spaces) os.environ["GOOGLE_API_KEY"] = st.secrets["GOOGLE_API_KEY"] # Initialize Google Gemini model llm = ChatGoogleGenerativeAI( model="gemini-1.5-pro", temperature=0 ) # Load the image classification pipeline @st.cache_resource def load_image_classification_pipeline(): """ Load the image classification pipeline using a pretrained model. """ return pipeline("image-classification", model="Shresthadev403/food-image-classification") pipe_classification = load_image_classification_pipeline() # Function to generate ingredients using Google Gemini def get_ingredients_google(food_name): """ Generate a list of ingredients for the given food item using Google Gemini AI. """ prompt = f"List the main ingredients typically used to prepare {food_name}:" response = llm.predict(prompt) return response.strip() # Streamlit app setup st.title("Food Image Recognition with Ingredients") # Add banner image st.image("IR_IMAGE.png", caption="Food Recognition Model", use_column_width=True) # Sidebar for model information st.sidebar.title("Model Information") st.sidebar.write("**Image Classification Model**: Shresthadev403/food-image-classification") st.sidebar.write("**LLM for Ingredients**: Google Gemini 1.5 Pro") # Upload image uploaded_file = st.file_uploader("Choose a food image...", type=["jpg", "png", "jpeg"]) if uploaded_file is not None: # Display the uploaded image image = Image.open(uploaded_file) st.image(image, caption="Uploaded Image", use_column_width=True) st.write("Classifying...") # Make predictions predictions = pipe_classification(image) # Display only the top prediction top_food = predictions[0]['label'] st.header(f"Food: {top_food}") # Generate and display ingredients for the top prediction st.subheader("Ingredients") try: ingredients = get_ingredients_google(top_food) st.write(ingredients) except Exception as e: st.error(f"Error generating ingredients: {e}") # Footer st.sidebar.markdown("Created with ❤️ using Streamlit and Hugging Face.")