CTP_Project / app.py
LuckyHappyFish's picture
done
95fdea8
import streamlit as st
from transformers import pipeline
from PIL import Image
from huggingface_hub import InferenceClient
import os
import openai
from openai.error import OpenAIError
from gradio_client import Client
# Set page configuration
st.set_page_config(
page_title="Plate Mate - Your Culinary Assistant",
page_icon="🍽️",
layout="centered", # center content for better mobile experience
initial_sidebar_state="collapsed",
)
def local_css():
st.markdown(
"""
<style>
/* General resets */
body, html {
margin: 0;
padding: 0;
font-family: "Helvetica Neue", Arial, sans-serif;
background-color: #f9f9f9;
}
/* Container and spacing */
.css-1aumxhk, .css-keje6w, .css-18e3th9, .css-12oz5g7 {
padding-left: 0 !important;
padding-right: 0 !important;
}
/* Title styling */
.title h1 {
text-align: center;
font-size: 2.5em;
margin-bottom: 0.5em;
color: #333;
}
/* Subheader styling */
h2, h3, h4, h5, h6 {
color: #555;
margin-bottom: 0.5em;
}
/* Adjust image styling */
img {
max-width: 100%;
height: auto;
border-radius: 8px;
}
/* On mobile, reduce font sizes and margins */
@media (max-width: 600px) {
.title h1 {
font-size: 1.8em;
}
h2, h3, h4 {
font-size: 1em;
}
.stButton button {
width: 100%;
}
}
/* Sidebar adjustments */
[data-testid="stSidebar"] {
width: 250px;
background: #fff;
}
/* Preset images container */
.preset-container {
display: flex;
flex-wrap: wrap;
gap: 10px;
justify-content: center;
margin: 1em 0;
}
.preset-container img {
width: 80px;
height: 80px;
object-fit: cover;
cursor: pointer;
border: 2px solid transparent;
}
.preset-container img:hover {
border: 2px solid #007BFF;
}
</style>
""", unsafe_allow_html=True
)
local_css() # Apply the CSS
# Hugging Face API key
API_KEY = st.secrets["HF_API_KEY"]
client = InferenceClient(api_key=API_KEY)
@st.cache_resource
def load_image_classification_pipeline():
return pipeline("image-classification", model="Shresthadev403/food-image-classification")
pipe_classification = load_image_classification_pipeline()
def get_ingredients_qwen(food_name):
messages = [
{
"role": "user",
"content": f"List only the main ingredients for {food_name}. "
f"Respond in a concise, comma-separated list without any extra text or explanations."
}
]
try:
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-Coder-32B-Instruct", messages=messages, max_tokens=50
)
generated_text = completion.choices[0]['message']['content'].strip()
return generated_text
except Exception as e:
return f"Error generating ingredients: {e}"
openai.api_key = st.secrets["openai"]
st.markdown('<div class="title"><h1>PlateMate - Your Culinary Assistant</h1></div>', unsafe_allow_html=True)
# Banner Image (Smaller or optional)
banner_image_path = "IR_IMAGE.png"
if os.path.exists(banner_image_path):
# Display a smaller version of the banner
col1, col2, col3 = st.columns([1,3,1])
with col2:
st.image(banner_image_path, use_container_width=True)
else:
st.warning(f"Banner image '{banner_image_path}' not found.")
# Sidebar Info
with st.sidebar:
st.title("Model Information")
st.write("**Image Classification Model:**")
st.write("Shresthadev403/food-image-classification")
st.write("**LLM for Ingredients:**")
st.write("Qwen/Qwen2.5-Coder-32B-Instruct")
st.markdown("---")
st.markdown("<p style='text-align: center;'>Developed by Muhammad Hassan Butt.</p>", unsafe_allow_html=True)
st.subheader("Upload a food image:")
# Preset Images
preset_images = {
"Pizza": "sample_pizza.png",
"Salad": "sample_salad.png",
"Sushi": "sample_sushi.png"
}
selected_preset = st.selectbox("Or choose a preset sample image:", ["None"] + list(preset_images.keys()))
if selected_preset != "None":
uploaded_file = preset_images[selected_preset]
else:
uploaded_file = st.file_uploader("", type=["jpg", "png", "jpeg"])
if uploaded_file is not None:
if isinstance(uploaded_file, str):
# Use the preset image
if os.path.exists(uploaded_file):
image = Image.open(uploaded_file)
else:
st.error(f"Sample image '{uploaded_file}' not found.")
image = None
else:
image = Image.open(uploaded_file)
if image:
st.image(image, caption="Selected Image", use_container_width=True)
if st.button("Classify"):
with st.spinner("Classifying..."):
try:
predictions = pipe_classification(image)
if predictions:
top_food = predictions[0]['label']
confidence = predictions[0]['score']
st.header(f"🍽️ Food: {top_food} ({confidence*100:.2f}% confidence)")
# Generate ingredients
st.subheader("📝 Ingredients")
try:
ingredients = get_ingredients_qwen(top_food)
st.write(ingredients)
except Exception as e:
st.error(f"Error generating ingredients: {e}")
# Healthier Alternatives
st.subheader("💡 Healthier Alternatives")
try:
# ONLY THIS PART CHANGED:
# Use the RAG calling method instead of the OpenAI function
client_rag = Client("https://66cd04274e7fd11327.gradio.live/")
result = client_rag.predict(query=f"What's a healthy {top_food} recipe, and why is it healthy?", api_name="/get_response")
st.write(result)
except OpenAIError as e:
st.error(f"OpenAI API error: {e}")
except Exception as e:
st.error(f"Unable to generate healthier alternatives: {e}")
else:
st.error("No predictions returned from the classification model.")
except Exception as e:
st.error(f"Error during classification: {e}")
else:
st.info("Please select or upload an image to get started.")