CTP_Project / app.py
LuckyHappyFish's picture
done
73fb5e5
raw
history blame
6.28 kB
import streamlit as st
from transformers import pipeline
from PIL import Image
from huggingface_hub import InferenceClient
import os
import openai # Added import
from openai.error import OpenAIError # For specific exception handling
# Set page configuration
st.set_page_config(
page_title="Plate Mate - Your Culinary Assistant",
page_icon="🍽️",
layout="centered",
initial_sidebar_state="expanded",
)
def local_css():
st.markdown(
"""
<style>
/* Your existing CSS styles here */
</style>
""", unsafe_allow_html=True
)
local_css() # Apply the CSS
# Hugging Face API key
API_KEY = st.secrets["HF_API_KEY"]
# Initialize the Hugging Face Inference Client
client = InferenceClient(api_key=API_KEY)
# Load the image classification pipeline
@st.cache_resource
def load_image_classification_pipeline():
""" Load the image classification pipeline using a pretrained model. """
return pipeline("image-classification", model="Shresthadev403/food-image-classification")
pipe_classification = load_image_classification_pipeline()
# Function to generate ingredients using Hugging Face Inference Client
def get_ingredients_qwen(food_name):
""" Generate a list of ingredients for the given food item using Qwen NLP model. Returns a clean, comma-separated list of ingredients. """
messages = [
{
"role": "user",
"content": f"List only the main ingredients for {food_name}. "
f"Respond in a concise, comma-separated list without any extra text or explanations."
}
]
try:
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-Coder-32B-Instruct", messages=messages, max_tokens=50
)
generated_text = completion.choices[0]['message']['content'].strip()
return generated_text
except Exception as e:
return f"Error generating ingredients: {e}"
# **Set OpenAI API Key**
openai.api_key = st.secrets["openai"] # Ensure you have this in your secrets
# Main content
st.markdown('<div class="title"><h1>PlateMate - Your Culinary Assistant</h1></div>', unsafe_allow_html=True)
# Add banner image with existence check
banner_image_path = "IR_IMAGE.png"
if os.path.exists(banner_image_path):
st.image(banner_image_path, use_container_width=True)
else:
st.warning(f"Banner image '{banner_image_path}' not found.")
# Sidebar for model information (hidden on small screens)
with st.sidebar:
st.title("Model Information")
st.write("**Image Classification Model**")
st.write("Shresthadev403/food-image-classification")
st.write("**LLM for Ingredients**")
st.write("Qwen/Qwen2.5-Coder-32B-Instruct")
st.markdown("---")
st.markdown("<p style='text-align: center;'>Developed by Muhammad Hassan Butt.</p>", unsafe_allow_html=True)
# File uploader
st.subheader("Upload a food image:")
uploaded_file = st.file_uploader("", type=["jpg", "png", "jpeg"])
if uploaded_file is not None:
# Display the uploaded image
if isinstance(uploaded_file, str): # Sample image selected
if os.path.exists(uploaded_file):
image = Image.open(uploaded_file)
else:
st.error(f"Sample image '{uploaded_file}' not found.")
image = None
else: # User uploaded image
image = Image.open(uploaded_file)
if image:
st.image(image, caption="Uploaded Image", use_container_width=True)
# Classification button
if st.button("Classify"):
with st.spinner("Classifying..."):
try:
# Make predictions
predictions = pipe_classification(image)
if predictions:
# Display only the top prediction
top_food = predictions[0]['label']
confidence = predictions[0]['score']
st.header(f"🍽️ Food: {top_food} ({confidence*100:.2f}% confidence)")
# Generate and display ingredients for the top prediction
st.subheader("📝 Ingredients")
try:
ingredients = get_ingredients_qwen(top_food)
st.write(ingredients)
except Exception as e:
st.error(f"Error generating ingredients: {e}")
# **Healthier Alternatives using OpenAI API**
st.subheader("💡 Healthier Alternatives")
try:
response = openai.ChatCompletion.create(
model="gpt-4", # You can choose the model you prefer
messages=[
{
"role": "system",
"content": "You are a helpful assistant specializing in providing healthy alternatives to various dishes."
},
{
"role": "user",
"content": f"What's a healthy {top_food} recipe, and why is it healthy?"
}
],
max_tokens=200, # Adjust as needed
temperature=0.7, # Adjust creativity level as needed
)
# Corrected access to 'content'
result = response['choices'][0]['message']['content'].strip()
st.write(result)
except OpenAIError as e:
st.error(f"OpenAI API error: {e}")
except Exception as e:
st.error(f"Unable to generate healthier alternatives: {e}")
else:
st.error("No predictions returned from the classification model.")
except Exception as e:
st.error(f"Error during classification: {e}")
else:
st.info("Please select or upload an image to get started.")