CTP_Project / app.py
LuckyHappyFish's picture
initial commit
07326b1
raw
history blame
7.78 kB
import streamlit as st
from transformers import pipeline
from PIL import Image
from huggingface_hub import InferenceClient
import os
from gradio_client import Client
# Set page configuration
st.set_page_config(
page_title="DelishAI - Your Culinary Assistant",
page_icon="🍽️",
layout="centered",
initial_sidebar_state="expanded",
)
# Custom CSS to improve styling and responsiveness
def local_css():
st.markdown(
"""
<style>
/* Main layout */
.main {
background-color: #f0f2f6;
}
/* Title styling */
.title h1 {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
text-align: center;
color: #ff4b4b;
font-size: 3rem;
margin-bottom: 20px;
}
/* Image styling */
.st-image img {
border-radius: 15px;
margin-bottom: 20px;
max-width: 100%;
}
/* Sidebar styling */
[data-testid="stSidebar"] {
background-color: #ff4b4b;
}
[data-testid="stSidebar"] .css-ng1t4o {
color: white;
}
[data-testid="stSidebar"] .css-1d391kg {
color: white;
}
/* File uploader styling */
.stFileUploader {
border: 2px dashed #ff4b4b;
border-radius: 10px;
padding: 20px;
text-align: center;
color: #ff4b4b;
background-color: #ffffff;
font-weight: bold;
}
/* File uploader hover effect */
.stFileUploader:hover {
background-color: #ffe5e5;
}
/* Button styling */
.stButton>button {
background-color: #ff4b4b;
color: white;
border: none;
padding: 0.7rem 1.5rem;
border-radius: 5px;
font-size: 1.1rem;
font-weight: bold;
margin-top: 10px;
}
.stButton>button:hover {
background-color: #e04343;
color: white;
}
/* Headers styling */
h2 {
color: #ff4b4b;
margin-top: 30px;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
h3 {
color: #ff4b4b;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
/* Text styling */
.stMarkdown p {
font-size: 1.1rem;
}
/* Footer styling */
footer {
visibility: hidden;
}
/* Hide sidebar on small screens */
@media only screen and (max-width: 600px) {
[data-testid="stSidebar"] {
display: none;
}
.main .block-container {
padding-left: 1rem;
padding-right: 1rem;
}
.title h1 {
font-size: 2rem;
}
.stButton>button {
width: 100%;
}
}
/* Sample images grid */
.sample-images {
display: flex;
justify-content: center;
flex-wrap: wrap;
gap: 10px;
}
.sample-images img {
width: 150px;
height: 150px;
object-fit: cover;
border-radius: 10px;
cursor: pointer;
border: 2px solid transparent;
}
.sample-images img:hover {
border: 2px solid #ff4b4b;
}
</style>
""",
unsafe_allow_html=True
)
local_css()
# Hugging Face API key
API_KEY = st.secrets["HF_API_KEY"]
# Initialize the Hugging Face Inference Client
client = InferenceClient(api_key=API_KEY)
# Load the image classification pipeline
@st.cache_resource
def load_image_classification_pipeline():
"""
Load the image classification pipeline using a pretrained model.
"""
return pipeline("image-classification", model="Shresthadev403/food-image-classification")
pipe_classification = load_image_classification_pipeline()
# Function to generate ingredients using Hugging Face Inference Client
def get_ingredients_qwen(food_name):
"""
Generate a list of ingredients for the given food item using Qwen NLP model.
Returns a clean, comma-separated list of ingredients.
"""
messages = [
{
"role": "user",
"content": f"List only the main ingredients for {food_name}. "
f"Respond in a concise, comma-separated list without any extra text or explanations."
}
]
try:
completion = client.chat.completions.create(
model="Qwen/Qwen2.5-Coder-32B-Instruct",
messages=messages,
max_tokens=50
)
generated_text = completion.choices[0].message["content"].strip()
return generated_text
except Exception as e:
return f"Error generating ingredients: {e}"
# Main content
st.markdown('<div class="title"><h1>DelishAI - Your Culinary Assistant</h1></div>', unsafe_allow_html=True)
# Add banner image
st.image("IR_IMAGE.png", use_container_width=True)
# Sidebar for model information (hidden on small screens)
with st.sidebar:
st.title("Model Information")
st.write("**Image Classification Model**")
st.write("Shresthadev403/food-image-classification")
st.write("**LLM for Ingredients**")
st.write("Qwen/Qwen2.5-Coder-32B-Instruct")
st.markdown("---")
st.markdown("<p style='text-align: center;'>Developed by Muhammad Hassan Butt.</p>", unsafe_allow_html=True)
# Sample images
st.subheader("Or try one of these sample images:")
sample_images = {
"Burger": "sample_images/burger.jpg",
"Pizza": "sample_images/pizza.jpg",
"Sushi": "sample_images/sushi.jpg",
"Salad": "sample_images/salad.jpg"
}
cols = st.columns(len(sample_images))
for idx, (name, file_path) in enumerate(sample_images.items()):
with cols[idx]:
if st.button(f"{name}", key=name):
uploaded_file = file_path
# File uploader
st.subheader("Upload a food image:")
uploaded_file = st.file_uploader("", type=["jpg", "png", "jpeg"])
if 'uploaded_file' in locals() and uploaded_file is not None:
# Display the uploaded image
if isinstance(uploaded_file, str):
# Sample image selected
image = Image.open(uploaded_file)
else:
# User uploaded image
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_container_width=True)
# Classification button
if st.button("Classify"):
with st.spinner("Classifying..."):
# Make predictions
predictions = pipe_classification(image)
# Display only the top prediction
top_food = predictions[0]['label']
st.header(f"🍽️ Food: {top_food}")
# Generate and display ingredients for the top prediction
st.subheader("📝 Ingredients")
try:
ingredients = get_ingredients_qwen(top_food)
st.write(ingredients)
except Exception as e:
st.error(f"Error generating ingredients: {e}")
st.subheader("💡 Healthier Alternatives")
try:
client_gradio = Client("https://8a56cb969da1f9d721.gradio.live/")
result = client_gradio.predict(
query=f"What's a healthy {top_food} recipe, and why is it healthy?",
api_name="/get_response"
)
st.write(result)
except Exception as e:
st.error(f"Unable to contact RAG: {e}")
else:
st.info("Please select or upload an image to get started.")