import os os.environ['CUDA_LAUNCH_BLOCKING'] = '1' import torch import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer def init_model(): model = AutoModelForCausalLM.from_pretrained("Linly-AI/Chinese-LLaMA-2-7B-hf", device_map="cuda:0", torch_dtype=torch.bfloat16, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("Linly-AI/Chinese-LLaMA-2-7B-hf", use_fast=False, trust_remote_code=True) return model, tokenizer def process(message, history): input_prompt = "" for interaction in history: input_prompt = f"{input_prompt} User: {str(interaction[0]).strip(' ')} Bot: {str(interaction[1]).strip(' ')}" input_prompt = f"{input_prompt} ### Instruction:{message.strip()} ### Response:" inputs = tokenizer(input_prompt, return_tensors="pt").to("cuda:0") try: generate_ids = model.generate(inputs.input_ids, max_new_tokens=2048, do_sample=True, top_k=30, top_p=0.84, temperature=1.0, repetition_penalty=1.15, eos_token_id=2, bos_token_id=1, pad_token_id=0) response = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] print('log:', input_prompt, response) response = response.split("### Response:")[-1] return response except: return "Error: 会话超长,请重试!" if __name__ == '__main__': examples = ["Python和JavaScript编程语言的主要区别是什么?", "影响消费者行为的主要因素是什么?", "请用pytorch实现一个带ReLU激活函数的全连接层的代码", "请用C++编程语言实现“给你两个字符串haystack和needle,在haystack字符串中找出needle字符串的第一个匹配项的下标(下标从 0 开始)。如果needle不是haystack的一部分,则返回-1。", "如何使用ssh -L,请用具体例子说明", "应对压力最有效的方法是什么?"] model, tokenizer = init_model() demo = gr.ChatInterface( process, chatbot=gr.Chatbot(height=600), textbox=gr.Textbox(placeholder="Input", container=False, scale=7), title="Linly ChatFlow", description="", theme="soft", examples=examples, cache_examples=True, retry_btn="Retry", undo_btn="Delete Previous", clear_btn="Clear", ) demo.queue(concurrency_count=75).launch()