Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,10 @@ import torch
|
|
2 |
|
3 |
import gradio as gr
|
4 |
import argparse
|
|
|
|
|
|
|
|
|
5 |
from utils import load_hyperparam, load_model
|
6 |
from models.tokenize import Tokenizer
|
7 |
from models.llama import *
|
@@ -36,22 +40,25 @@ def init_args():
|
|
36 |
|
37 |
args = load_hyperparam(args)
|
38 |
|
39 |
-
args.tokenizer = Tokenizer(model_path=args.spm_model_path)
|
|
|
40 |
args.vocab_size = args.tokenizer.sp_model.vocab_size()
|
41 |
|
42 |
|
43 |
def init_model():
|
44 |
global lm_generation
|
45 |
-
torch.set_default_tensor_type(torch.HalfTensor)
|
46 |
-
model = LLaMa(args)
|
47 |
-
torch.set_default_tensor_type(torch.FloatTensor)
|
|
|
48 |
# args.load_model_path = hf_hub_download(repo_id=args.load_model_path, filename='chatflow_13b.bin')
|
49 |
-
|
50 |
-
|
51 |
-
model.eval()
|
52 |
|
53 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
54 |
-
model.to(device)
|
|
|
|
|
55 |
print(torch.cuda.max_memory_allocated() / 1024 ** 3)
|
56 |
lm_generation = LmGeneration(model, args.tokenizer)
|
57 |
|
|
|
2 |
|
3 |
import gradio as gr
|
4 |
import argparse
|
5 |
+
import torch
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
+
# from transformers.generation.utils import GenerationConfig
|
8 |
+
|
9 |
from utils import load_hyperparam, load_model
|
10 |
from models.tokenize import Tokenizer
|
11 |
from models.llama import *
|
|
|
40 |
|
41 |
args = load_hyperparam(args)
|
42 |
|
43 |
+
# args.tokenizer = Tokenizer(model_path=args.spm_model_path)
|
44 |
+
args.tokenizer = AutoTokenizer.from_pretrained("Linly-AI/Linly-ChatFlow", use_fast=False, trust_remote_code=True)
|
45 |
args.vocab_size = args.tokenizer.sp_model.vocab_size()
|
46 |
|
47 |
|
48 |
def init_model():
|
49 |
global lm_generation
|
50 |
+
# torch.set_default_tensor_type(torch.HalfTensor)
|
51 |
+
# model = LLaMa(args)
|
52 |
+
# torch.set_default_tensor_type(torch.FloatTensor)
|
53 |
+
# # args.load_model_path = hf_hub_download(repo_id=args.load_model_path, filename='chatflow_13b.bin')
|
54 |
# args.load_model_path = hf_hub_download(repo_id=args.load_model_path, filename='chatflow_13b.bin')
|
55 |
+
# model = load_model(model, args.load_model_path)
|
56 |
+
# model.eval()
|
|
|
57 |
|
58 |
+
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
59 |
+
# model.to(device)
|
60 |
+
model = AutoModelForCausalLM.from_pretrained("Linly-AI/Linly-ChatFlow", device_map="auto", torch_dtype=torch.float16, trust_remote_code=True)
|
61 |
+
|
62 |
print(torch.cuda.max_memory_allocated() / 1024 ** 3)
|
63 |
lm_generation = LmGeneration(model, args.tokenizer)
|
64 |
|