Spaces:
Sleeping
Sleeping
Lingo-IITGN
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,27 @@
|
|
1 |
-
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
# @spaces.GPU
|
9 |
-
# def greet(input_text):
|
10 |
-
# input_token = tokenizer.encode(input_text, return_tensors="pt").to("cuda")
|
11 |
-
# output = model.generate(input_token, max_new_tokens=100, num_return_sequences=1, do_sample=True, top_k=50, top_p=0.95, temperature=0.7)
|
12 |
-
# output_text = tokenizer.batch_decode(output)[0]
|
13 |
-
# return output_text
|
14 |
-
|
15 |
-
# demo = gr.Interface(fn=greet, inputs=["text"], outputs=["text"],)
|
16 |
|
17 |
@spaces.GPU
|
18 |
def greet(input_text):
|
19 |
-
input_token = tokenizer.encode(input_text, return_tensors="pt").to("
|
20 |
-
|
21 |
output = model.generate(input_token, max_new_tokens=100, num_return_sequences=1, do_sample=True, top_k=50, top_p=0.95, temperature=0.7)
|
22 |
output_text = tokenizer.batch_decode(output)[0]
|
23 |
return output_text
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
demo = gr.Interface(fn=greet, inputs=["text"], outputs=["text"],)
|
27 |
demo.launch()
|
|
|
1 |
+
import spaces, gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
|
4 |
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("LingoIITGN/ganga-1b")
|
6 |
+
model = AutoModelForCausalLM.from_pretrained("LingoIITGN/ganga-1b")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
@spaces.GPU
|
9 |
def greet(input_text):
|
10 |
+
input_token = tokenizer.encode(input_text, return_tensors="pt").to("cuda")
|
|
|
11 |
output = model.generate(input_token, max_new_tokens=100, num_return_sequences=1, do_sample=True, top_k=50, top_p=0.95, temperature=0.7)
|
12 |
output_text = tokenizer.batch_decode(output)[0]
|
13 |
return output_text
|
14 |
|
15 |
+
# demo = gr.Interface(fn=greet, inputs=["text"], outputs=["text"],)
|
16 |
+
|
17 |
+
# @spaces.GPU
|
18 |
+
# def greet(input_text):
|
19 |
+
# input_token = tokenizer.encode(input_text, return_tensors="pt").to("cpu")
|
20 |
+
|
21 |
+
# output = model.generate(input_token, max_new_tokens=100, num_return_sequences=1, do_sample=True, top_k=50, top_p=0.95, temperature=0.7)
|
22 |
+
# output_text = tokenizer.batch_decode(output)[0]
|
23 |
+
# return output_text
|
24 |
+
|
25 |
|
26 |
demo = gr.Interface(fn=greet, inputs=["text"], outputs=["text"],)
|
27 |
demo.launch()
|