Spaces:
Running
on
A100
Running
on
A100
Enhance video generation error handling and memory management
Browse files
app.py
CHANGED
@@ -17,6 +17,7 @@ import cv2
|
|
17 |
from PIL import Image
|
18 |
import tempfile
|
19 |
import os
|
|
|
20 |
|
21 |
# Load Hugging Face token if needed
|
22 |
hf_token = os.getenv("HF_TOKEN")
|
@@ -198,24 +199,34 @@ def generate_video_from_text(
|
|
198 |
def gradio_progress_callback(self, step, timestep, kwargs):
|
199 |
progress((step + 1) / num_inference_steps)
|
200 |
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
output_path = tempfile.mktemp(suffix=".mp4")
|
221 |
print(images.shape)
|
@@ -257,7 +268,9 @@ def generate_video_from_image(
|
|
257 |
if not image_path:
|
258 |
raise gr.Error("Please provide an input image.", duration=5)
|
259 |
|
260 |
-
media_items =
|
|
|
|
|
261 |
|
262 |
sample = {
|
263 |
"prompt": prompt,
|
@@ -271,6 +284,7 @@ def generate_video_from_image(
|
|
271 |
|
272 |
def gradio_progress_callback(self, step, timestep, kwargs):
|
273 |
progress((step + 1) / num_inference_steps)
|
|
|
274 |
try:
|
275 |
with torch.no_grad():
|
276 |
images = pipeline(
|
@@ -301,13 +315,17 @@ def generate_video_from_image(
|
|
301 |
for frame in video_np[..., ::-1]:
|
302 |
out.write(frame)
|
303 |
out.release()
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
finally:
|
305 |
-
|
306 |
-
del images
|
307 |
-
del video_np
|
308 |
-
gc.collect()
|
309 |
torch.cuda.empty_cache()
|
310 |
-
|
|
|
311 |
return output_path
|
312 |
|
313 |
|
|
|
17 |
from PIL import Image
|
18 |
import tempfile
|
19 |
import os
|
20 |
+
import gc
|
21 |
|
22 |
# Load Hugging Face token if needed
|
23 |
hf_token = os.getenv("HF_TOKEN")
|
|
|
199 |
def gradio_progress_callback(self, step, timestep, kwargs):
|
200 |
progress((step + 1) / num_inference_steps)
|
201 |
|
202 |
+
try:
|
203 |
+
with torch.no_grad():
|
204 |
+
images = pipeline(
|
205 |
+
num_inference_steps=num_inference_steps,
|
206 |
+
num_images_per_prompt=1,
|
207 |
+
guidance_scale=guidance_scale,
|
208 |
+
generator=generator,
|
209 |
+
output_type="pt",
|
210 |
+
height=height,
|
211 |
+
width=width,
|
212 |
+
num_frames=num_frames,
|
213 |
+
frame_rate=frame_rate,
|
214 |
+
**sample,
|
215 |
+
is_video=True,
|
216 |
+
vae_per_channel_normalize=True,
|
217 |
+
conditioning_method=ConditioningMethod.FIRST_FRAME,
|
218 |
+
mixed_precision=True,
|
219 |
+
callback_on_step_end=gradio_progress_callback,
|
220 |
+
).images
|
221 |
+
except Exception as e:
|
222 |
+
raise gr.Error(
|
223 |
+
f"An error occurred while generating the video. Please try again. Error: {e}",
|
224 |
+
duration=5,
|
225 |
+
)
|
226 |
+
finally:
|
227 |
+
pipeline.to("cpu")
|
228 |
+
torch.cuda.empty_cache()
|
229 |
+
gc.collect()
|
230 |
|
231 |
output_path = tempfile.mktemp(suffix=".mp4")
|
232 |
print(images.shape)
|
|
|
268 |
if not image_path:
|
269 |
raise gr.Error("Please provide an input image.", duration=5)
|
270 |
|
271 |
+
media_items = (
|
272 |
+
load_image_to_tensor_with_resize(image_path, height, width).to(device).detach()
|
273 |
+
)
|
274 |
|
275 |
sample = {
|
276 |
"prompt": prompt,
|
|
|
284 |
|
285 |
def gradio_progress_callback(self, step, timestep, kwargs):
|
286 |
progress((step + 1) / num_inference_steps)
|
287 |
+
|
288 |
try:
|
289 |
with torch.no_grad():
|
290 |
images = pipeline(
|
|
|
315 |
for frame in video_np[..., ::-1]:
|
316 |
out.write(frame)
|
317 |
out.release()
|
318 |
+
except Exception as e:
|
319 |
+
raise gr.Error(
|
320 |
+
f"An error occurred while generating the video. Please try again. Error: {e}",
|
321 |
+
duration=5,
|
322 |
+
)
|
323 |
+
|
324 |
finally:
|
325 |
+
pipeline.to("cpu")
|
|
|
|
|
|
|
326 |
torch.cuda.empty_cache()
|
327 |
+
gc.collect()
|
328 |
+
|
329 |
return output_path
|
330 |
|
331 |
|