Spaces:
Running
on
A100
Running
on
A100
from typing import Optional, Union | |
import torch | |
import inspect | |
import math | |
import torch.nn as nn | |
from diffusers import ConfigMixin, ModelMixin | |
from diffusers.models.autoencoders.vae import ( | |
DecoderOutput, | |
DiagonalGaussianDistribution, | |
) | |
from diffusers.models.modeling_outputs import AutoencoderKLOutput | |
from xora.models.autoencoders.conv_nd_factory import make_conv_nd | |
class AutoencoderKLWrapper(ModelMixin, ConfigMixin): | |
"""Variational Autoencoder (VAE) model with KL loss. | |
VAE from the paper Auto-Encoding Variational Bayes by Diederik P. Kingma and Max Welling. | |
This model is a wrapper around an encoder and a decoder, and it adds a KL loss term to the reconstruction loss. | |
Args: | |
encoder (`nn.Module`): | |
Encoder module. | |
decoder (`nn.Module`): | |
Decoder module. | |
latent_channels (`int`, *optional*, defaults to 4): | |
Number of latent channels. | |
""" | |
def __init__( | |
self, | |
encoder: nn.Module, | |
decoder: nn.Module, | |
latent_channels: int = 4, | |
dims: int = 2, | |
sample_size=512, | |
use_quant_conv: bool = True, | |
): | |
super().__init__() | |
# pass init params to Encoder | |
self.encoder = encoder | |
self.use_quant_conv = use_quant_conv | |
# pass init params to Decoder | |
quant_dims = 2 if dims == 2 else 3 | |
self.decoder = decoder | |
if use_quant_conv: | |
self.quant_conv = make_conv_nd( | |
quant_dims, 2 * latent_channels, 2 * latent_channels, 1 | |
) | |
self.post_quant_conv = make_conv_nd( | |
quant_dims, latent_channels, latent_channels, 1 | |
) | |
else: | |
self.quant_conv = nn.Identity() | |
self.post_quant_conv = nn.Identity() | |
self.use_z_tiling = False | |
self.use_hw_tiling = False | |
self.dims = dims | |
self.z_sample_size = 1 | |
self.decoder_params = inspect.signature(self.decoder.forward).parameters | |
# only relevant if vae tiling is enabled | |
self.set_tiling_params(sample_size=sample_size, overlap_factor=0.25) | |
def set_tiling_params(self, sample_size: int = 512, overlap_factor: float = 0.25): | |
self.tile_sample_min_size = sample_size | |
num_blocks = len(self.encoder.down_blocks) | |
self.tile_latent_min_size = int(sample_size / (2 ** (num_blocks - 1))) | |
self.tile_overlap_factor = overlap_factor | |
def enable_z_tiling(self, z_sample_size: int = 8): | |
r""" | |
Enable tiling during VAE decoding. | |
When this option is enabled, the VAE will split the input tensor in tiles to compute decoding in several | |
steps. This is useful to save some memory and allow larger batch sizes. | |
""" | |
self.use_z_tiling = z_sample_size > 1 | |
self.z_sample_size = z_sample_size | |
assert ( | |
z_sample_size % 8 == 0 or z_sample_size == 1 | |
), f"z_sample_size must be a multiple of 8 or 1. Got {z_sample_size}." | |
def disable_z_tiling(self): | |
r""" | |
Disable tiling during VAE decoding. If `use_tiling` was previously invoked, this method will go back to computing | |
decoding in one step. | |
""" | |
self.use_z_tiling = False | |
def enable_hw_tiling(self): | |
r""" | |
Enable tiling during VAE decoding along the height and width dimension. | |
""" | |
self.use_hw_tiling = True | |
def disable_hw_tiling(self): | |
r""" | |
Disable tiling during VAE decoding along the height and width dimension. | |
""" | |
self.use_hw_tiling = False | |
def _hw_tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True): | |
overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor)) | |
blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor) | |
row_limit = self.tile_latent_min_size - blend_extent | |
# Split the image into 512x512 tiles and encode them separately. | |
rows = [] | |
for i in range(0, x.shape[3], overlap_size): | |
row = [] | |
for j in range(0, x.shape[4], overlap_size): | |
tile = x[ | |
:, | |
:, | |
:, | |
i : i + self.tile_sample_min_size, | |
j : j + self.tile_sample_min_size, | |
] | |
tile = self.encoder(tile) | |
tile = self.quant_conv(tile) | |
row.append(tile) | |
rows.append(row) | |
result_rows = [] | |
for i, row in enumerate(rows): | |
result_row = [] | |
for j, tile in enumerate(row): | |
# blend the above tile and the left tile | |
# to the current tile and add the current tile to the result row | |
if i > 0: | |
tile = self.blend_v(rows[i - 1][j], tile, blend_extent) | |
if j > 0: | |
tile = self.blend_h(row[j - 1], tile, blend_extent) | |
result_row.append(tile[:, :, :, :row_limit, :row_limit]) | |
result_rows.append(torch.cat(result_row, dim=4)) | |
moments = torch.cat(result_rows, dim=3) | |
return moments | |
def blend_z( | |
self, a: torch.Tensor, b: torch.Tensor, blend_extent: int | |
) -> torch.Tensor: | |
blend_extent = min(a.shape[2], b.shape[2], blend_extent) | |
for z in range(blend_extent): | |
b[:, :, z, :, :] = a[:, :, -blend_extent + z, :, :] * ( | |
1 - z / blend_extent | |
) + b[:, :, z, :, :] * (z / blend_extent) | |
return b | |
def blend_v( | |
self, a: torch.Tensor, b: torch.Tensor, blend_extent: int | |
) -> torch.Tensor: | |
blend_extent = min(a.shape[3], b.shape[3], blend_extent) | |
for y in range(blend_extent): | |
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * ( | |
1 - y / blend_extent | |
) + b[:, :, :, y, :] * (y / blend_extent) | |
return b | |
def blend_h( | |
self, a: torch.Tensor, b: torch.Tensor, blend_extent: int | |
) -> torch.Tensor: | |
blend_extent = min(a.shape[4], b.shape[4], blend_extent) | |
for x in range(blend_extent): | |
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * ( | |
1 - x / blend_extent | |
) + b[:, :, :, :, x] * (x / blend_extent) | |
return b | |
def _hw_tiled_decode(self, z: torch.FloatTensor, target_shape): | |
overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor)) | |
blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor) | |
row_limit = self.tile_sample_min_size - blend_extent | |
tile_target_shape = ( | |
*target_shape[:3], | |
self.tile_sample_min_size, | |
self.tile_sample_min_size, | |
) | |
# Split z into overlapping 64x64 tiles and decode them separately. | |
# The tiles have an overlap to avoid seams between tiles. | |
rows = [] | |
for i in range(0, z.shape[3], overlap_size): | |
row = [] | |
for j in range(0, z.shape[4], overlap_size): | |
tile = z[ | |
:, | |
:, | |
:, | |
i : i + self.tile_latent_min_size, | |
j : j + self.tile_latent_min_size, | |
] | |
tile = self.post_quant_conv(tile) | |
decoded = self.decoder(tile, target_shape=tile_target_shape) | |
row.append(decoded) | |
rows.append(row) | |
result_rows = [] | |
for i, row in enumerate(rows): | |
result_row = [] | |
for j, tile in enumerate(row): | |
# blend the above tile and the left tile | |
# to the current tile and add the current tile to the result row | |
if i > 0: | |
tile = self.blend_v(rows[i - 1][j], tile, blend_extent) | |
if j > 0: | |
tile = self.blend_h(row[j - 1], tile, blend_extent) | |
result_row.append(tile[:, :, :, :row_limit, :row_limit]) | |
result_rows.append(torch.cat(result_row, dim=4)) | |
dec = torch.cat(result_rows, dim=3) | |
return dec | |
def encode( | |
self, z: torch.FloatTensor, return_dict: bool = True | |
) -> Union[DecoderOutput, torch.FloatTensor]: | |
if self.use_z_tiling and z.shape[2] > self.z_sample_size > 1: | |
num_splits = z.shape[2] // self.z_sample_size | |
sizes = [self.z_sample_size] * num_splits | |
sizes = ( | |
sizes + [z.shape[2] - sum(sizes)] | |
if z.shape[2] - sum(sizes) > 0 | |
else sizes | |
) | |
tiles = z.split(sizes, dim=2) | |
moments_tiles = [ | |
( | |
self._hw_tiled_encode(z_tile, return_dict) | |
if self.use_hw_tiling | |
else self._encode(z_tile) | |
) | |
for z_tile in tiles | |
] | |
moments = torch.cat(moments_tiles, dim=2) | |
else: | |
moments = ( | |
self._hw_tiled_encode(z, return_dict) | |
if self.use_hw_tiling | |
else self._encode(z) | |
) | |
posterior = DiagonalGaussianDistribution(moments) | |
if not return_dict: | |
return (posterior,) | |
return AutoencoderKLOutput(latent_dist=posterior) | |
def _encode(self, x: torch.FloatTensor) -> AutoencoderKLOutput: | |
h = self.encoder(x) | |
moments = self.quant_conv(h) | |
return moments | |
def _decode( | |
self, | |
z: torch.FloatTensor, | |
target_shape=None, | |
timesteps: Optional[torch.Tensor] = None, | |
) -> Union[DecoderOutput, torch.FloatTensor]: | |
z = self.post_quant_conv(z) | |
if "timesteps" in self.decoder_params: | |
dec = self.decoder(z, target_shape=target_shape, timesteps=timesteps) | |
else: | |
dec = self.decoder(z, target_shape=target_shape) | |
return dec | |
def decode( | |
self, | |
z: torch.FloatTensor, | |
return_dict: bool = True, | |
target_shape=None, | |
timesteps: Optional[torch.Tensor] = None, | |
) -> Union[DecoderOutput, torch.FloatTensor]: | |
assert target_shape is not None, "target_shape must be provided for decoding" | |
if self.use_z_tiling and z.shape[2] > self.z_sample_size > 1: | |
reduction_factor = int( | |
self.encoder.patch_size_t | |
* 2 | |
** ( | |
len(self.encoder.down_blocks) | |
- 1 | |
- math.sqrt(self.encoder.patch_size) | |
) | |
) | |
split_size = self.z_sample_size // reduction_factor | |
num_splits = z.shape[2] // split_size | |
# copy target shape, and divide frame dimension (=2) by the context size | |
target_shape_split = list(target_shape) | |
target_shape_split[2] = target_shape[2] // num_splits | |
decoded_tiles = [ | |
( | |
self._hw_tiled_decode(z_tile, target_shape_split) | |
if self.use_hw_tiling | |
else self._decode(z_tile, target_shape=target_shape_split) | |
) | |
for z_tile in torch.tensor_split(z, num_splits, dim=2) | |
] | |
decoded = torch.cat(decoded_tiles, dim=2) | |
else: | |
decoded = ( | |
self._hw_tiled_decode(z, target_shape) | |
if self.use_hw_tiling | |
else self._decode(z, target_shape=target_shape, timesteps=timesteps) | |
) | |
if not return_dict: | |
return (decoded,) | |
return DecoderOutput(sample=decoded) | |
def forward( | |
self, | |
sample: torch.FloatTensor, | |
sample_posterior: bool = False, | |
return_dict: bool = True, | |
generator: Optional[torch.Generator] = None, | |
) -> Union[DecoderOutput, torch.FloatTensor]: | |
r""" | |
Args: | |
sample (`torch.FloatTensor`): Input sample. | |
sample_posterior (`bool`, *optional*, defaults to `False`): | |
Whether to sample from the posterior. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether to return a [`DecoderOutput`] instead of a plain tuple. | |
generator (`torch.Generator`, *optional*): | |
Generator used to sample from the posterior. | |
""" | |
x = sample | |
posterior = self.encode(x).latent_dist | |
if sample_posterior: | |
z = posterior.sample(generator=generator) | |
else: | |
z = posterior.mode() | |
dec = self.decode(z, target_shape=sample.shape).sample | |
if not return_dict: | |
return (dec,) | |
return DecoderOutput(sample=dec) | |