Spaces:
Running
on
A100
Running
on
A100
from typing import Tuple, Union | |
import torch | |
from xora.models.autoencoders.dual_conv3d import DualConv3d | |
from xora.models.autoencoders.causal_conv3d import CausalConv3d | |
def make_conv_nd( | |
dims: Union[int, Tuple[int, int]], | |
in_channels: int, | |
out_channels: int, | |
kernel_size: int, | |
stride=1, | |
padding=0, | |
dilation=1, | |
groups=1, | |
bias=True, | |
causal=False, | |
): | |
if dims == 2: | |
return torch.nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
groups=groups, | |
bias=bias, | |
) | |
elif dims == 3: | |
if causal: | |
return CausalConv3d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
groups=groups, | |
bias=bias, | |
) | |
return torch.nn.Conv3d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
groups=groups, | |
bias=bias, | |
) | |
elif dims == (2, 1): | |
return DualConv3d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
bias=bias, | |
) | |
else: | |
raise ValueError(f"unsupported dimensions: {dims}") | |
def make_linear_nd( | |
dims: int, | |
in_channels: int, | |
out_channels: int, | |
bias=True, | |
): | |
if dims == 2: | |
return torch.nn.Conv2d( | |
in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias | |
) | |
elif dims == 3 or dims == (2, 1): | |
return torch.nn.Conv3d( | |
in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias | |
) | |
else: | |
raise ValueError(f"unsupported dimensions: {dims}") | |