Spaces:
Runtime error
Runtime error
File size: 2,893 Bytes
10fdae2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import streamlit as st
from model import GPT2LMHeadModel
from transformers import BertTokenizer
import argparse
import os
import torch
import time
from generate_title import predict_one_sample
st.set_page_config(page_title="Demo", initial_sidebar_state="auto", layout="wide")
# @st.cache_data(allow_output_mutation=True)
def get_model(device, vocab_path, model_path):
tokenizer = BertTokenizer.from_pretrained(vocab_path, do_lower_case=True)
model = GPT2LMHeadModel.from_pretrained(model_path)
model.to(device)
model.eval()
return tokenizer, model
device_ids = 0
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICE"] = str(device_ids)
device = torch.device("cuda:1" if torch.cuda.is_available() and int(device_ids) >= 0 else "cpu")
tokenizer, model = get_model(device, "vocab.txt", "checkpoint-55922")
def writer():
st.markdown(
"""
## Text Summary DEMO
"""
)
st.sidebar.subheader("配置参数")
batch_size = st.sidebar.slider("batch_size", min_value=0, max_value=10, value=3)
generate_max_len = st.sidebar.number_input("generate_max_len", min_value=0, max_value=64, value=32, step=1)
repetition_penalty = st.sidebar.number_input("repetition_penalty", min_value=0.0, max_value=10.0, value=1.2,
step=0.1)
top_k = st.sidebar.slider("top_k", min_value=0, max_value=10, value=3, step=1)
top_p = st.sidebar.number_input("top_p", min_value=0.0, max_value=1.0, value=0.95, step=0.01)
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', default=batch_size, type=int, help='生成标题的个数')
parser.add_argument('--generate_max_len', default=generate_max_len, type=int, help='生成标题的最大长度')
parser.add_argument('--repetition_penalty', default=repetition_penalty, type=float, help='重复处罚率')
parser.add_argument('--top_k', default=top_k, type=float, help='解码时保留概率最高的多少个标记')
parser.add_argument('--top_p', default=top_p, type=float, help='解码时保留概率累加大于多少的标记')
parser.add_argument('--max_len', type=int, default=512, help='输入模型的最大长度,要比config中n_ctx小')
args = parser.parse_args()
content = st.text_area("输入正文", max_chars=512)
if st.button("一键生成摘要"):
start_message = st.empty()
start_message.write("正在抽取,请等待...")
start_time = time.time()
titles = predict_one_sample(model, tokenizer, device, args, content)
end_time = time.time()
start_message.write("抽取完成,耗时{}s".format(end_time - start_time))
for i, title in enumerate(titles):
st.text_input("第{}个结果".format(i + 1), title)
else:
st.stop()
if __name__ == '__main__':
writer()
|