Spaces:
Sleeping
Sleeping
import gradio as gr | |
from functools import partial | |
from transformers import pipeline, pipelines | |
###################### | |
##### INFERENCE ###### | |
###################### | |
# Text Analysis | |
def cls_inference(input: list[str], pipe: pipeline) -> dict: | |
results = pipe(input, top_k=None) | |
return {x["label"]: x["score"] for x in results} | |
# POSP | |
def tagging(text: str, pipe: pipeline): | |
output = pipe(text) | |
return {"text": text, "entities": output} | |
# Text Analysis | |
def text_analysis(text, pipes: list[pipeline]): | |
outputs = [] | |
for pipe in pipes: | |
if isinstance(pipe, pipelines.token_classification.TokenClassificationPipeline): | |
outputs.append(tagging(text, pipe)) | |
else: | |
outputs.append(cls_inference(text, pipe)) | |
return outputs | |
###################### | |
##### INTERFACE ###### | |
###################### | |
def text_interface(pipe: pipeline, examples: list[str], output_label: str, title: str, desc: str): | |
return gr.Interface( | |
fn=partial(cls_inference, pipe=pipe), | |
inputs=[ | |
gr.Textbox(lines=5, label="Input Text"), | |
], | |
title=title, | |
description=desc, | |
outputs=[gr.Label(label=output_label)], | |
examples=examples, | |
allow_flagging="never", | |
) | |
def token_classification_interface(pipe: pipeline, examples: list[str], output_label: str, title: str, desc: str): | |
return gr.Interface( | |
fn=partial(tagging, pipe=pipe), | |
inputs=[ | |
gr.Textbox(placeholder="Masukan kalimat di sini...", label="Input Text"), | |
], | |
outputs=[gr.HighlightedText(label=output_label)], | |
title=title, | |
examples=examples, | |
description=desc, | |
allow_flagging="never", | |
) | |
def text_analysis_interface(pipe: list, examples: list[str], output_label: str, title: str, desc: str): | |
with gr.Blocks() as text_analysis_interface: | |
gr.Markdown(title) | |
gr.Markdown(desc) | |
input_text = gr.Textbox(lines=5, label="Input Text") | |
with gr.Row(): | |
outputs = [ | |
( | |
gr.HighlightedText(label=label) | |
if isinstance(p, pipelines.token_classification.TokenClassificationPipeline) | |
else gr.Label(label=label) | |
) | |
for label, p in zip(output_label, pipe) | |
] | |
btn = gr.Button("Analyze") | |
btn.click( | |
fn=partial(text_analysis, pipes=pipe), | |
inputs=[input_text], | |
outputs=outputs, | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=input_text, | |
outputs=outputs, | |
) | |
return text_analysis_interface | |