File size: 5,637 Bytes
36e36f2
 
 
 
 
 
 
 
 
 
0d31e31
5197189
 
0a3c859
5197189
0d31e31
5197189
0d31e31
5197189
 
 
0d31e31
5197189
 
 
 
 
 
 
e8ed588
5197189
e8ed588
 
 
 
 
 
 
 
5197189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8ed588
 
 
 
 
 
 
 
 
 
 
 
 
5197189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
011669a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
---
title: gradio-model4dgs
colorFrom: purple
colorTo: yellow
sdk: gradio
sdk_version: 4.29.0
app_file: app.py
pinned: false
license: mit
---

# `gradio_model4dgs`
<a href="https://pypi.org/project/gradio_model4dgs/" target="_blank"><img alt="PyPI - Version" src="https://img.shields.io/pypi/v/gradio_model4dgs"></a>  

Python library for easily interacting with trained machine learning models

## Installation

```bash
pip install gradio_model4dgs
```

## Usage

```python
import gradio as gr
from gradio_model4dgs import Model4DGS
import os

image_dir = os.path.join(os.path.dirname(__file__), "assets")

if os.path.exists(image_dir) and os.path.isdir(image_dir) and os.listdir(image_dir):
    examples = [os.path.join(image_dir, file) for file in os.listdir(image_dir)]
else:
    examples = [os.path.join(os.path.dirname(__file__), example) for example in Model4DGS().example_inputs()]

with gr.Blocks() as demo:
    with gr.Row():
        Model4DGS(value=examples, label="4D Model", fps=8)

if __name__ == "__main__":
    demo.launch(share=True)
```

## `Model4DGS`

### Initialization

<table>
<thead>
<tr>
<th align="left">name</th>
<th align="left" style="width: 25%;">type</th>
<th align="left">default</th>
<th align="left">description</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left"><code>value</code></td>
<td align="left" style="width: 25%;">

```python
str | Callable | None
```

</td>
<td align="left"><code>None</code></td>
<td align="left">path to (.splat) file to show in model4DGS viewer. If callable, the function will be called whenever the app loads to set the initial value of the component.</td>
</tr>

<tr>
<td align="left"><code>fps</code></td>
<td align="left" style="width: 25%;">

```python
float
```

</td>
<td align="left"><code>8</code></td>
<td align="left">None</td>
</tr>

<tr>
<td align="left"><code>height</code></td>
<td align="left" style="width: 25%;">

```python
int | None
```

</td>
<td align="left"><code>None</code></td>
<td align="left">height of the model4DGS component, in pixels.</td>
</tr>

<tr>
<td align="left"><code>label</code></td>
<td align="left" style="width: 25%;">

```python
str | None
```

</td>
<td align="left"><code>None</code></td>
<td align="left">None</td>
</tr>

<tr>
<td align="left"><code>show_label</code></td>
<td align="left" style="width: 25%;">

```python
bool | None
```

</td>
<td align="left"><code>None</code></td>
<td align="left">None</td>
</tr>

<tr>
<td align="left"><code>every</code></td>
<td align="left" style="width: 25%;">

```python
float | None
```

</td>
<td align="left"><code>None</code></td>
<td align="left">None</td>
</tr>

<tr>
<td align="left"><code>container</code></td>
<td align="left" style="width: 25%;">

```python
bool
```

</td>
<td align="left"><code>True</code></td>
<td align="left">None</td>
</tr>

<tr>
<td align="left"><code>scale</code></td>
<td align="left" style="width: 25%;">

```python
int | None
```

</td>
<td align="left"><code>None</code></td>
<td align="left">None</td>
</tr>

<tr>
<td align="left"><code>min_width</code></td>
<td align="left" style="width: 25%;">

```python
int
```

</td>
<td align="left"><code>160</code></td>
<td align="left">None</td>
</tr>

<tr>
<td align="left"><code>interactive</code></td>
<td align="left" style="width: 25%;">

```python
bool | None
```

</td>
<td align="left"><code>None</code></td>
<td align="left">None</td>
</tr>

<tr>
<td align="left"><code>visible</code></td>
<td align="left" style="width: 25%;">

```python
bool
```

</td>
<td align="left"><code>True</code></td>
<td align="left">None</td>
</tr>

<tr>
<td align="left"><code>elem_id</code></td>
<td align="left" style="width: 25%;">

```python
str | None
```

</td>
<td align="left"><code>None</code></td>
<td align="left">None</td>
</tr>

<tr>
<td align="left"><code>elem_classes</code></td>
<td align="left" style="width: 25%;">

```python
list[str] | str | None
```

</td>
<td align="left"><code>None</code></td>
<td align="left">None</td>
</tr>

<tr>
<td align="left"><code>render</code></td>
<td align="left" style="width: 25%;">

```python
bool
```

</td>
<td align="left"><code>True</code></td>
<td align="left">None</td>
</tr>
</tbody></table>


### Events

| name | description |
|:-----|:------------|
| `change` | Triggered when the value of the Model4DGS changes either because of user input (e.g. a user types in a textbox) OR because of a function update (e.g. an image receives a value from the output of an event trigger). See `.input()` for a listener that is only triggered by user input. |
| `upload` | This listener is triggered when the user uploads a file into the Model4DGS. |
| `edit` | This listener is triggered when the user edits the Model4DGS (e.g. image) using the built-in editor. |
| `clear` | This listener is triggered when the user clears the Model4DGS using the X button for the component. |



### User function

The impact on the users predict function varies depending on whether the component is used as an input or output for an event (or both).

- When used as an Input, the component only impacts the input signature of the user function.
- When used as an output, the component only impacts the return signature of the user function.

The code snippet below is accurate in cases where the component is used as both an input and an output.

- **As output:** Is passed, the preprocessed input data sent to the user's function in the backend.
- **As input:** Should return, the output data received by the component from the user's function in the backend.

 ```python
 def predict(
     value: List[str] | None
 ) -> List[str] | str | None:
     return value
 ```