Spaces:
Runtime error
Runtime error
File size: 5,637 Bytes
36e36f2 0d31e31 5197189 0a3c859 5197189 0d31e31 5197189 0d31e31 5197189 0d31e31 5197189 e8ed588 5197189 e8ed588 5197189 e8ed588 5197189 011669a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
---
title: gradio-model4dgs
colorFrom: purple
colorTo: yellow
sdk: gradio
sdk_version: 4.29.0
app_file: app.py
pinned: false
license: mit
---
# `gradio_model4dgs`
<a href="https://pypi.org/project/gradio_model4dgs/" target="_blank"><img alt="PyPI - Version" src="https://img.shields.io/pypi/v/gradio_model4dgs"></a>
Python library for easily interacting with trained machine learning models
## Installation
```bash
pip install gradio_model4dgs
```
## Usage
```python
import gradio as gr
from gradio_model4dgs import Model4DGS
import os
image_dir = os.path.join(os.path.dirname(__file__), "assets")
if os.path.exists(image_dir) and os.path.isdir(image_dir) and os.listdir(image_dir):
examples = [os.path.join(image_dir, file) for file in os.listdir(image_dir)]
else:
examples = [os.path.join(os.path.dirname(__file__), example) for example in Model4DGS().example_inputs()]
with gr.Blocks() as demo:
with gr.Row():
Model4DGS(value=examples, label="4D Model", fps=8)
if __name__ == "__main__":
demo.launch(share=True)
```
## `Model4DGS`
### Initialization
<table>
<thead>
<tr>
<th align="left">name</th>
<th align="left" style="width: 25%;">type</th>
<th align="left">default</th>
<th align="left">description</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left"><code>value</code></td>
<td align="left" style="width: 25%;">
```python
str | Callable | None
```
</td>
<td align="left"><code>None</code></td>
<td align="left">path to (.splat) file to show in model4DGS viewer. If callable, the function will be called whenever the app loads to set the initial value of the component.</td>
</tr>
<tr>
<td align="left"><code>fps</code></td>
<td align="left" style="width: 25%;">
```python
float
```
</td>
<td align="left"><code>8</code></td>
<td align="left">None</td>
</tr>
<tr>
<td align="left"><code>height</code></td>
<td align="left" style="width: 25%;">
```python
int | None
```
</td>
<td align="left"><code>None</code></td>
<td align="left">height of the model4DGS component, in pixels.</td>
</tr>
<tr>
<td align="left"><code>label</code></td>
<td align="left" style="width: 25%;">
```python
str | None
```
</td>
<td align="left"><code>None</code></td>
<td align="left">None</td>
</tr>
<tr>
<td align="left"><code>show_label</code></td>
<td align="left" style="width: 25%;">
```python
bool | None
```
</td>
<td align="left"><code>None</code></td>
<td align="left">None</td>
</tr>
<tr>
<td align="left"><code>every</code></td>
<td align="left" style="width: 25%;">
```python
float | None
```
</td>
<td align="left"><code>None</code></td>
<td align="left">None</td>
</tr>
<tr>
<td align="left"><code>container</code></td>
<td align="left" style="width: 25%;">
```python
bool
```
</td>
<td align="left"><code>True</code></td>
<td align="left">None</td>
</tr>
<tr>
<td align="left"><code>scale</code></td>
<td align="left" style="width: 25%;">
```python
int | None
```
</td>
<td align="left"><code>None</code></td>
<td align="left">None</td>
</tr>
<tr>
<td align="left"><code>min_width</code></td>
<td align="left" style="width: 25%;">
```python
int
```
</td>
<td align="left"><code>160</code></td>
<td align="left">None</td>
</tr>
<tr>
<td align="left"><code>interactive</code></td>
<td align="left" style="width: 25%;">
```python
bool | None
```
</td>
<td align="left"><code>None</code></td>
<td align="left">None</td>
</tr>
<tr>
<td align="left"><code>visible</code></td>
<td align="left" style="width: 25%;">
```python
bool
```
</td>
<td align="left"><code>True</code></td>
<td align="left">None</td>
</tr>
<tr>
<td align="left"><code>elem_id</code></td>
<td align="left" style="width: 25%;">
```python
str | None
```
</td>
<td align="left"><code>None</code></td>
<td align="left">None</td>
</tr>
<tr>
<td align="left"><code>elem_classes</code></td>
<td align="left" style="width: 25%;">
```python
list[str] | str | None
```
</td>
<td align="left"><code>None</code></td>
<td align="left">None</td>
</tr>
<tr>
<td align="left"><code>render</code></td>
<td align="left" style="width: 25%;">
```python
bool
```
</td>
<td align="left"><code>True</code></td>
<td align="left">None</td>
</tr>
</tbody></table>
### Events
| name | description |
|:-----|:------------|
| `change` | Triggered when the value of the Model4DGS changes either because of user input (e.g. a user types in a textbox) OR because of a function update (e.g. an image receives a value from the output of an event trigger). See `.input()` for a listener that is only triggered by user input. |
| `upload` | This listener is triggered when the user uploads a file into the Model4DGS. |
| `edit` | This listener is triggered when the user edits the Model4DGS (e.g. image) using the built-in editor. |
| `clear` | This listener is triggered when the user clears the Model4DGS using the X button for the component. |
### User function
The impact on the users predict function varies depending on whether the component is used as an input or output for an event (or both).
- When used as an Input, the component only impacts the input signature of the user function.
- When used as an output, the component only impacts the return signature of the user function.
The code snippet below is accurate in cases where the component is used as both an input and an output.
- **As output:** Is passed, the preprocessed input data sent to the user's function in the backend.
- **As input:** Should return, the output data received by the component from the user's function in the backend.
```python
def predict(
value: List[str] | None
) -> List[str] | str | None:
return value
```
|