|
import gradio as gr |
|
import argparse |
|
import os, sys |
|
import torch |
|
|
|
def parse_args() -> argparse.Namespace: |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--device', type=str, default='cpu') |
|
parser.add_argument('--theme', type=str) |
|
parser.add_argument('--live', action='store_true') |
|
parser.add_argument('--share', action='store_true') |
|
parser.add_argument('--port', type=int) |
|
parser.add_argument('--disable-queue', |
|
dest='enable_queue', |
|
action='store_false') |
|
parser.add_argument('--allow-flagging', type=str, default='never') |
|
parser.add_argument('--allow-screenshot', action='store_true') |
|
return parser.parse_args() |
|
|
|
_TITLE = '''DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation''' |
|
|
|
_DESCRIPTION = ''' |
|
<div> |
|
<a style="display:inline-block" href="https://dreamgaussian.github.io"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a> |
|
<a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2309.16653"><img src="https://img.shields.io/badge/2306.16928-f9f7f7?logo="></a> |
|
<a style="display:inline-block; margin-left: .5em" href='https://github.com/dreamgaussian/dreamgaussian'><img src='https://img.shields.io/github/stars/dreamgaussian/dreamgaussian?style=social'/></a> |
|
</div> |
|
We present DreamGausssion, a 3D content generation framework that significantly improves the efficiency of 3D content creation. |
|
''' |
|
_IMG_USER_GUIDE = "Please upload an image in the block above (or choose an example above) and click **Run Generation**." |
|
_TXT_USER_GUIDE = "Please type what you want to generate in the block above and click **Run Generation**." |
|
|
|
|
|
def inference_img(img): |
|
pass |
|
|
|
|
|
def inference_txt(txt): |
|
pass |
|
|
|
def run_demo(): |
|
args = parse_args() |
|
args.device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
print('*** Now using %s.'%(args.device)) |
|
|
|
|
|
with open('README.md', 'r') as f: |
|
article = f.read() |
|
|
|
|
|
example_folder = os.path.join(os.path.dirname(__file__), 'demo_examples') |
|
example_fns = os.listdir(example_folder) |
|
example_fns.sort() |
|
examples_full = [os.path.join(example_folder, x) for x in example_fns if x.endswith('.png')] |
|
|
|
|
|
with gr.Blocks(title=_TITLE, css="style.css") as demo: |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
gr.Markdown('# ' + _TITLE) |
|
with gr.Column(scale=0): |
|
gr.DuplicateButton(value='Duplicate Space for private use', |
|
elem_id='duplicate-button') |
|
gr.Markdown(_DESCRIPTION) |
|
|
|
|
|
with gr.Row(variant='panel'): |
|
with gr.Column(scale=6): |
|
image_block = gr.Image(type='pil', image_mode='RGBA', height=290, label='Input image', tool=None) |
|
|
|
elevation_slider = gr.Slider(-90, 90, value=0, step=1, label='Estimated elevation angle') |
|
gr.Markdown("default to 0 (horizontal), range from [-90, 90]. If you upload a look-down image, try a value like -30") |
|
|
|
preprocess_chk = gr.Checkbox(True, label='Preprocess image automatically (remove background and recenter object)') |
|
|
|
gr.Examples( |
|
examples=examples_full, |
|
inputs=[image_block], |
|
outputs=[image_block], |
|
cache_examples=False, |
|
label='Examples (click one of the images below to start)', |
|
examples_per_page=40 |
|
) |
|
img_run_btn = gr.Button('Run Generation', variant='primary', interactive=False) |
|
img_guide_text = gr.Markdown(_IMG_USER_GUIDE, visible=True) |
|
|
|
with gr.Column(scale=4): |
|
processed_image_block = gr.Image(type='pil', image_mode='RGBA', height=290, label='Processed image', tool=None) |
|
img_mesh_output = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="Textured Mesh", elem_id="img-model-3d-out") |
|
|
|
|
|
with gr.Row(variant='panel'): |
|
with gr.Column(scale=6): |
|
text_block = gr.Textbox(label="Input text") |
|
|
|
txt_run_btn = gr.Button('Run Generation', variant='primary', interactive=False) |
|
txt_guide_text = gr.Markdown(_TXT_USER_GUIDE, visible=True) |
|
|
|
with gr.Column(scale=4): |
|
txt_mesh_output = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="Textured Mesh", elem_id="txt-model-3d-out") |
|
|
|
gr.Markdown(article) |
|
gr.HTML(""" |
|
<div class="footer"> |
|
<p> |
|
This is a test demo |
|
</p> |
|
</div> |
|
""") |
|
|
|
demo.queue().launch(share=True, max_threads=80) |
|
|
|
if __name__ == '__main__': |
|
run_demo() |
|
|