Spaces:
Sleeping
Sleeping
Lamp Socrates
commited on
Commit
·
7551cdd
1
Parent(s):
5c82e3e
latest
Browse files
app.py
CHANGED
@@ -2,6 +2,8 @@ import streamlit as st
|
|
2 |
from transformers import pipeline
|
3 |
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
4 |
import pandas as pd
|
|
|
|
|
5 |
|
6 |
@st.cache_resource()
|
7 |
def load_trained_model():
|
@@ -18,6 +20,13 @@ def load_trained_model():
|
|
18 |
ner_pipeline = pipeline("ner", model=model, tokenizer = tokenizer)
|
19 |
return ner_pipeline
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def load_random_examples(dataset_name, num_examples=5):
|
22 |
"""
|
23 |
Load random examples from the specified Hugging Face dataset.
|
@@ -28,11 +37,11 @@ def load_random_examples(dataset_name, num_examples=5):
|
|
28 |
pd.DataFrame: A DataFrame containing the random examples.
|
29 |
"""
|
30 |
# Load the dataset
|
31 |
-
from datasets import load_dataset
|
32 |
-
dataset = load_dataset("surrey-nlp/PLOD-CW")
|
33 |
|
|
|
|
|
34 |
# Convert the dataset to a pandas DataFrame
|
35 |
-
df = pd.DataFrame(
|
36 |
|
37 |
# Select random examples
|
38 |
random_examples = df.sample(n=1)
|
@@ -162,6 +171,8 @@ def prep_page():
|
|
162 |
if text:
|
163 |
st.write("Entities recognized:")
|
164 |
entities = model(text)
|
|
|
|
|
165 |
|
166 |
# Create a dictionary to map entity labels to colors
|
167 |
label_colors = {
|
@@ -173,7 +184,7 @@ def prep_page():
|
|
173 |
|
174 |
# Prepare the HTML output with styled entities
|
175 |
def get_entity_html(text, entities):
|
176 |
-
html = ""
|
177 |
last_idx = 0
|
178 |
for entity in entities:
|
179 |
start = entity['start']
|
@@ -181,17 +192,18 @@ def prep_page():
|
|
181 |
label = entity['entity']
|
182 |
entity_text = text[start:end]
|
183 |
color = label_colors.get(label, 'lightgray')
|
184 |
-
|
185 |
# Append the text before the entity
|
186 |
-
html += text[last_idx:start]
|
187 |
# Append the entity with styling
|
188 |
-
html += f'<
|
189 |
last_idx = end
|
190 |
-
|
191 |
# Append any remaining text after the last entity
|
192 |
-
html += text[last_idx:]
|
|
|
193 |
return html
|
194 |
-
|
195 |
# Generate and display the styled HTML
|
196 |
styled_text = get_entity_html(text, entities)
|
197 |
|
@@ -209,7 +221,10 @@ if __name__ == '__main__':
|
|
209 |
if 'api' in query_params:
|
210 |
sentence = query_params.get('sentence')
|
211 |
entities = predict_using_trained(sentence)
|
212 |
-
|
|
|
|
|
|
|
213 |
else:
|
214 |
prep_page()
|
215 |
|
|
|
2 |
from transformers import pipeline
|
3 |
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
4 |
import pandas as pd
|
5 |
+
from pprint import pprint
|
6 |
+
|
7 |
|
8 |
@st.cache_resource()
|
9 |
def load_trained_model():
|
|
|
20 |
ner_pipeline = pipeline("ner", model=model, tokenizer = tokenizer)
|
21 |
return ner_pipeline
|
22 |
|
23 |
+
|
24 |
+
@st.cache_data()
|
25 |
+
def load_plod_cw_dataset():
|
26 |
+
from datasets import load_dataset
|
27 |
+
dataset = load_dataset("surrey-nlp/PLOD-CW")
|
28 |
+
return dataset
|
29 |
+
|
30 |
def load_random_examples(dataset_name, num_examples=5):
|
31 |
"""
|
32 |
Load random examples from the specified Hugging Face dataset.
|
|
|
37 |
pd.DataFrame: A DataFrame containing the random examples.
|
38 |
"""
|
39 |
# Load the dataset
|
|
|
|
|
40 |
|
41 |
+
dat = load_plod_cw_dataset()
|
42 |
+
|
43 |
# Convert the dataset to a pandas DataFrame
|
44 |
+
df = pd.DataFrame(dat['test'])
|
45 |
|
46 |
# Select random examples
|
47 |
random_examples = df.sample(n=1)
|
|
|
171 |
if text:
|
172 |
st.write("Entities recognized:")
|
173 |
entities = model(text)
|
174 |
+
|
175 |
+
pprint(entities)
|
176 |
|
177 |
# Create a dictionary to map entity labels to colors
|
178 |
label_colors = {
|
|
|
184 |
|
185 |
# Prepare the HTML output with styled entities
|
186 |
def get_entity_html(text, entities):
|
187 |
+
html = "<div>"
|
188 |
last_idx = 0
|
189 |
for entity in entities:
|
190 |
start = entity['start']
|
|
|
192 |
label = entity['entity']
|
193 |
entity_text = text[start:end]
|
194 |
color = label_colors.get(label, 'lightgray')
|
195 |
+
|
196 |
# Append the text before the entity
|
197 |
+
html += text[last_idx:start].replace(" ", "<br>")
|
198 |
# Append the entity with styling
|
199 |
+
html += f'<div style="background-color: {color}; padding: 5px; border-radius: 3px; margin: 5px 0;">{entity_text}</div>'
|
200 |
last_idx = end
|
201 |
+
|
202 |
# Append any remaining text after the last entity
|
203 |
+
html += text[last_idx:].replace(" ", "<br>")
|
204 |
+
html += "</div>"
|
205 |
return html
|
206 |
+
|
207 |
# Generate and display the styled HTML
|
208 |
styled_text = get_entity_html(text, entities)
|
209 |
|
|
|
221 |
if 'api' in query_params:
|
222 |
sentence = query_params.get('sentence')
|
223 |
entities = predict_using_trained(sentence)
|
224 |
+
response = {"sentence" : sentence , "entities" : entities}
|
225 |
+
pprint(response)
|
226 |
+
|
227 |
+
st.write(response)
|
228 |
else:
|
229 |
prep_page()
|
230 |
|