|
|
|
|
|
|
|
|
|
|
|
""" |
|
OneFormer criterion. |
|
""" |
|
import logging |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from detectron2.utils.comm import get_world_size |
|
from detectron2.projects.point_rend.point_features import ( |
|
get_uncertain_point_coords_with_randomness, |
|
point_sample, |
|
) |
|
|
|
from ..utils.misc import is_dist_avail_and_initialized, nested_tensor_from_tensor_list |
|
from ..utils import box_ops |
|
import torch.distributed as dist |
|
import diffdist.functional as diff_dist |
|
import numpy as np |
|
|
|
def dist_collect(x): |
|
""" collect all tensor from all GPUs |
|
args: |
|
x: shape (mini_batch, ...) |
|
returns: |
|
shape (mini_batch * num_gpu, ...) |
|
""" |
|
x = x.contiguous() |
|
out_list = [torch.zeros_like(x, device=x.device, dtype=x.dtype).contiguous() for _ in range(dist.get_world_size())] |
|
out_list = diff_dist.all_gather(out_list, x) |
|
return torch.cat(out_list, dim=0).contiguous() |
|
|
|
def dice_loss( |
|
inputs: torch.Tensor, |
|
targets: torch.Tensor, |
|
num_masks: float, |
|
): |
|
""" |
|
Compute the DICE loss, similar to generalized IOU for masks |
|
Args: |
|
inputs: A float tensor of arbitrary shape. |
|
The predictions for each example. |
|
targets: A float tensor with the same shape as inputs. Stores the binary |
|
classification label for each element in inputs |
|
(0 for the negative class and 1 for the positive class). |
|
""" |
|
inputs = inputs.sigmoid() |
|
inputs = inputs.flatten(1) |
|
numerator = 2 * (inputs * targets).sum(-1) |
|
denominator = inputs.sum(-1) + targets.sum(-1) |
|
loss = 1 - (numerator + 1) / (denominator + 1) |
|
return loss.sum() / num_masks |
|
|
|
|
|
dice_loss_jit = torch.jit.script( |
|
dice_loss |
|
) |
|
|
|
|
|
def sigmoid_ce_loss( |
|
inputs: torch.Tensor, |
|
targets: torch.Tensor, |
|
num_masks: float, |
|
): |
|
""" |
|
Args: |
|
inputs: A float tensor of arbitrary shape. |
|
The predictions for each example. |
|
targets: A float tensor with the same shape as inputs. Stores the binary |
|
classification label for each element in inputs |
|
(0 for the negative class and 1 for the positive class). |
|
Returns: |
|
Loss tensor |
|
""" |
|
loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") |
|
loss = loss.mean(1) |
|
return loss.sum() / num_masks |
|
|
|
|
|
sigmoid_ce_loss_jit = torch.jit.script( |
|
sigmoid_ce_loss |
|
) |
|
|
|
|
|
def calculate_uncertainty(logits): |
|
""" |
|
We estimate uncerainty as L1 distance between 0.0 and the logit prediction in 'logits' for the |
|
foreground class in `classes`. |
|
Args: |
|
logits (Tensor): A tensor of shape (R, 1, ...) for class-specific or |
|
class-agnostic, where R is the total number of predicted masks in all images and C is |
|
the number of foreground classes. The values are logits. |
|
Returns: |
|
scores (Tensor): A tensor of shape (R, 1, ...) that contains uncertainty scores with |
|
the most uncertain locations having the highest uncertainty score. |
|
""" |
|
assert logits.shape[1] == 1 |
|
gt_class_logits = logits.clone() |
|
return -(torch.abs(gt_class_logits)) |
|
|
|
|
|
class SetCriterion(nn.Module): |
|
"""This class computes the loss for DETR. |
|
The process happens in two steps: |
|
1) we compute hungarian assignment between ground truth boxes and the outputs of the model |
|
2) we supervise each pair of matched ground-truth / prediction (supervise class and box) |
|
""" |
|
|
|
def __init__(self, num_classes, matcher, weight_dict, eos_coef, losses, |
|
num_points, oversample_ratio, importance_sample_ratio, contrast_temperature=None): |
|
"""Create the criterion. |
|
Parameters: |
|
num_classes: number of object categories, omitting the special no-object category |
|
matcher: module able to compute a matching between targets and proposals |
|
weight_dict: dict containing as key the names of the losses and as values their relative weight. |
|
eos_coef: relative classification weight applied to the no-object category |
|
losses: list of all the losses to be applied. See get_loss for list of available losses. |
|
""" |
|
super().__init__() |
|
self.num_classes = num_classes |
|
self.matcher = matcher |
|
self.weight_dict = weight_dict |
|
self.eos_coef = eos_coef |
|
self.losses = losses |
|
empty_weight = torch.ones(self.num_classes + 1) |
|
empty_weight[-1] = self.eos_coef |
|
self.register_buffer("empty_weight", empty_weight) |
|
self.cross_entropy = nn.CrossEntropyLoss() |
|
|
|
|
|
self.num_points = num_points |
|
self.oversample_ratio = oversample_ratio |
|
self.importance_sample_ratio = importance_sample_ratio |
|
self.contrast_temperature = contrast_temperature |
|
if self.contrast_temperature is not None: |
|
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / contrast_temperature)) |
|
|
|
|
|
def loss_contrastive(self, outputs, targets, indices, num_masks): |
|
assert "contrastive_logits" in outputs |
|
assert "texts" in outputs |
|
image_x = outputs["contrastive_logits"].float() |
|
|
|
batch_size = image_x.shape[0] |
|
|
|
labels = torch.arange(batch_size, dtype=torch.long, device=image_x.device) + batch_size * dist.get_rank() |
|
|
|
text_x = outputs["texts"] |
|
|
|
|
|
image_x = F.normalize(image_x.flatten(1), dim=-1) |
|
text_x = F.normalize(text_x.flatten(1), dim=-1) |
|
|
|
logits_per_img = image_x @ dist_collect(text_x).t() |
|
logits_per_text = text_x @ dist_collect(image_x).t() |
|
|
|
logit_scale = torch.clamp(self.logit_scale.exp(), max=100) |
|
loss_img = self.cross_entropy(logits_per_img * logit_scale, labels) |
|
loss_text = self.cross_entropy(logits_per_text * logit_scale, labels) |
|
|
|
loss_contrastive = loss_img + loss_text |
|
|
|
losses = {"loss_contrastive": loss_contrastive} |
|
return losses |
|
|
|
def loss_labels(self, outputs, targets, indices, num_masks): |
|
"""Classification loss (NLL) |
|
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes] |
|
""" |
|
assert "pred_logits" in outputs |
|
src_logits = outputs["pred_logits"].float() |
|
|
|
idx = self._get_src_permutation_idx(indices) |
|
target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)]) |
|
target_classes = torch.full( |
|
src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device |
|
) |
|
target_classes[idx] = target_classes_o |
|
|
|
ce_weight = torch.full( |
|
src_logits.shape[:2], self.eos_coef, dtype=torch.float32, device=src_logits.device |
|
) |
|
ce_weight[idx] = torch.tensor(1.).to(target_classes.device) |
|
|
|
loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight, reduce=False, reduction="none") |
|
loss_ce = loss_ce.sum(1) / ce_weight.sum() |
|
loss_ce = loss_ce.sum() |
|
losses = {"loss_ce": loss_ce} |
|
return losses |
|
|
|
def loss_masks(self, outputs, targets, indices, num_masks): |
|
"""Compute the losses related to the masks: the focal loss and the dice loss. |
|
targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w] |
|
""" |
|
assert "pred_masks" in outputs |
|
|
|
src_idx = self._get_src_permutation_idx(indices) |
|
tgt_idx = self._get_tgt_permutation_idx(indices) |
|
src_masks = outputs["pred_masks"] |
|
src_masks = src_masks[src_idx] |
|
masks = [t["masks"] for t in targets] |
|
|
|
target_masks, valid = nested_tensor_from_tensor_list(masks).decompose() |
|
target_masks = target_masks.to(src_masks) |
|
target_masks = target_masks[tgt_idx] |
|
|
|
|
|
|
|
src_masks = src_masks[:, None] |
|
target_masks = target_masks[:, None] |
|
|
|
with torch.no_grad(): |
|
|
|
point_coords = get_uncertain_point_coords_with_randomness( |
|
src_masks, |
|
lambda logits: calculate_uncertainty(logits), |
|
self.num_points, |
|
self.oversample_ratio, |
|
self.importance_sample_ratio, |
|
) |
|
|
|
point_labels = point_sample( |
|
target_masks, |
|
point_coords, |
|
align_corners=False, |
|
).squeeze(1) |
|
|
|
point_logits = point_sample( |
|
src_masks, |
|
point_coords, |
|
align_corners=False, |
|
).squeeze(1) |
|
|
|
losses = { |
|
"loss_mask": sigmoid_ce_loss_jit(point_logits, point_labels, num_masks), |
|
"loss_dice": dice_loss_jit(point_logits, point_labels, num_masks), |
|
} |
|
|
|
del src_masks |
|
del target_masks |
|
return losses |
|
|
|
def _get_src_permutation_idx(self, indices): |
|
|
|
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)]) |
|
src_idx = torch.cat([src for (src, _) in indices]) |
|
return batch_idx, src_idx |
|
|
|
def _get_tgt_permutation_idx(self, indices): |
|
|
|
batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)]) |
|
tgt_idx = torch.cat([tgt for (_, tgt) in indices]) |
|
return batch_idx, tgt_idx |
|
|
|
def get_loss(self, loss, outputs, targets, indices, num_masks): |
|
loss_map = { |
|
'labels': self.loss_labels, |
|
'masks': self.loss_masks, |
|
'contrastive': self.loss_contrastive, |
|
} |
|
assert loss in loss_map, f"do you really want to compute {loss} loss?" |
|
return loss_map[loss](outputs, targets, indices, num_masks) |
|
|
|
def forward(self, outputs, targets): |
|
"""This performs the loss computation. |
|
Parameters: |
|
outputs: dict of tensors, see the output specification of the model for the format |
|
targets: list of dicts, such that len(targets) == batch_size. |
|
The expected keys in each dict depends on the losses applied, see each loss' doc |
|
""" |
|
outputs_without_aux = {k: v for k, v in outputs.items() if k != "aux_outputs"} |
|
|
|
|
|
indices = self.matcher(outputs_without_aux, targets) |
|
|
|
|
|
num_masks = sum(len(t["labels"]) for t in targets) |
|
num_masks = torch.as_tensor( |
|
[num_masks], dtype=torch.float, device=next(iter(outputs.values())).device |
|
) |
|
if is_dist_avail_and_initialized(): |
|
torch.distributed.all_reduce(num_masks) |
|
num_masks = torch.clamp(num_masks / get_world_size(), min=1).item() |
|
|
|
|
|
losses = {} |
|
for loss in self.losses: |
|
losses.update(self.get_loss(loss, outputs, targets, indices, num_masks)) |
|
|
|
|
|
if "aux_outputs" in outputs: |
|
for i, aux_outputs in enumerate(outputs["aux_outputs"]): |
|
indices = self.matcher(aux_outputs, targets) |
|
for loss in self.losses: |
|
if loss == "contrastive": |
|
continue |
|
l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_masks) |
|
l_dict = {k + f"_{i}": v for k, v in l_dict.items()} |
|
losses.update(l_dict) |
|
|
|
return losses |
|
|
|
def __repr__(self): |
|
head = "Criterion " + self.__class__.__name__ |
|
body = [ |
|
"matcher: {}".format(self.matcher.__repr__(_repr_indent=8)), |
|
"losses: {}".format(self.losses), |
|
"weight_dict: {}".format(self.weight_dict), |
|
"num_classes: {}".format(self.num_classes), |
|
"eos_coef: {}".format(self.eos_coef), |
|
"num_points: {}".format(self.num_points), |
|
"oversample_ratio: {}".format(self.oversample_ratio), |
|
"importance_sample_ratio: {}".format(self.importance_sample_ratio), |
|
] |
|
_repr_indent = 4 |
|
lines = [head] + [" " * _repr_indent + line for line in body] |
|
return "\n".join(lines) |