import os import streamlit as st import json import tarfile from huggingface_hub import HfFileSystem hf_fs = HfFileSystem(token=os.getenv("HF_TOKEN")) st.set_page_config(layout="wide") # Disable scroll bar st.html("") DATASET_ID: str = "LLM360/k2-eval-gallery" EVAL_DIR: str = os.path.join("datasets", DATASET_ID, "k2-eval-results") st.title("K2 Evaluation Gallery") st.markdown("""The K2 gallery allows one to browse the output of various evaluations on intermediate K2 checkpoints, which provides an intuitive understanding on how the model develops and improves over time.""") def hf_listdir(parent_dir: str): return (os.path.basename(file) for file in hf_fs.ls( parent_dir, detail=False )) with st.sidebar: html = f"" st.markdown(html, unsafe_allow_html=True) metric = st.radio( "Choose a metric", options=hf_listdir(EVAL_DIR), help="type of evaluation benchmark task" ) n_shot = st.radio( "Selece an n-shot number", hf_listdir(os.path.join(EVAL_DIR, metric)), help="number of examples included in few-shot prompting" ) col1, col2 = st.columns(2) def render_column(col_label): st.header(f"Checkpoint {col_label}") ckpt = st.select_slider('Select a checkpoint', sorted(hf_listdir(os.path.join(EVAL_DIR, metric, n_shot))), key=col_label + '1', help="checkpoint index from 3 to 360") st.write(f'Veiwing Evaluation Results for Checkpoint: `{ckpt}`') suffix, result_file = ".tar.gz", "results.json" file_list: list = sorted(f_name[:-len(suffix)] for f_name in hf_listdir(os.path.join(EVAL_DIR, metric, n_shot, ckpt))) if result_file in file_list: file_list.remove(result_file) file_list = file_list + [result_file] file = st.selectbox("Select a file", file_list, key=col_label + '2', help="a list of raw output files from evaluation results") file += suffix with tarfile.open(fileobj=hf_fs.open( os.path.join(EVAL_DIR, metric, n_shot, ckpt, file), "rb" ), mode="r:gz") as tar: f = tar.extractfile(tar.next()) eval_json = json.load(f) if isinstance(eval_json, list): doc_id = st.slider("Select a document id", 0, len(eval_json) - 1, 0, 1, key=col_label + '3', help="index of a specific question/task in current file") st.json(eval_json[doc_id]) else: st.json(eval_json) f.close() with col1: render_column('A') with col2: render_column('B')