KvrParaskevi commited on
Commit
0551f07
·
verified ·
1 Parent(s): ac410da

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -1
app.py CHANGED
@@ -9,13 +9,31 @@ model_name = "KvrParaskevi/Llama-2-7b-Hotel-Booking-Model"
9
  model = AutoModelForCausalLM.from_pretrained(model_name)
10
  tokenizer = AutoTokenizer.from_pretrained(model_name)
11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  # Define the Langchain chatbot function
13
  @spaces.GPU
14
  def chatbot(message, history):
15
  # Create a Langchain prompt template
16
  prompt_template = HumanMessagePromptTemplate.from_template(message)
17
  # Create a Langchain chat prompt template
18
- chat_prompt_template = ChatPromptTemplate.from_messages([prompt_template])
 
19
  # Use the Langchain TextIteratorStreamer to generate responses
20
  streamer = TextStreamer(model, tokenizer)
21
  response = model.generate(chat_prompt_template, streamer=streamer, max_new_tokens=20)
 
9
  model = AutoModelForCausalLM.from_pretrained(model_name)
10
  tokenizer = AutoTokenizer.from_pretrained(model_name)
11
 
12
+ system_message = """<<SYS>>
13
+ You are an AI having conversation with a human. Below is an instruction that describes a task.
14
+ Write a response that appropriately completes the request.
15
+ Reply with the most helpful and logic answer. During the conversation you need to ask the user
16
+ the following questions to complete the hotel booking task.
17
+ 1) Where would you like to stay and when?
18
+ 2) How many people are staying in the room?
19
+ 3) Do you prefer any ammenities like breakfast included or gym?
20
+ 4) What is your name, your email address and phone number?
21
+ Make sure you receive a logical answer from the user from every question to complete the hotel
22
+ booking process.
23
+ <</SYS>>
24
+ """
25
+ messages = [
26
+ SystemMessagePromptTemplate.from_template(system_message)
27
+ ]
28
+
29
  # Define the Langchain chatbot function
30
  @spaces.GPU
31
  def chatbot(message, history):
32
  # Create a Langchain prompt template
33
  prompt_template = HumanMessagePromptTemplate.from_template(message)
34
  # Create a Langchain chat prompt template
35
+ messages.append(prompt_template)
36
+ chat_prompt_template = ChatPromptTemplate.from_messages(messages)
37
  # Use the Langchain TextIteratorStreamer to generate responses
38
  streamer = TextStreamer(model, tokenizer)
39
  response = model.generate(chat_prompt_template, streamer=streamer, max_new_tokens=20)